Uglich, Russian Federation
Uglich, Russian Federation
Uglich, Russian Federation
Uglich, Russian Federation
Mesophilic and thermophilic lactic acid bacteria are an effective biotechnological means of improving the sensory properties of low-fat cheeses. These additional starter cultures are an effective and promising direction in cheese production. Mesophilic and thermophilic lactobacilli possess a diverse metabolism that allows them to approximate the flavor and rheological profile of low-fat cheeses to those of fatty cheeses. Mesophilic lactobacilli Lacticaseibacillus casei are a popular component in low-fat cheeses due to their proteolytic activity and unique aminopeptidase system. This culture improves the consumer properties of low-fat cheeses and reduces their ripening time. Mesophilic rods Lactobacillus rhamnosus are responsible for creamy taste and soft texture. Mesophilic lactobacilli Lactiplantibacillus plantarum affect the secondary proteolysis, thereby changing the amino acid composition of cheese and improving its sensory properties. Lactobacillus helveticus are the most common thermophilic lactobacilli used in low-fat cheeses. Due to their specific enzymatic activity, they break down hydrophobic peptides and reduce bitterness or other unwanted flavors, which low-fat cheeses are notorious for. In addition, this culture gives low-fat cheeses original shades of taste and aroma. Functional cultures improve the technology of low-fat cheese production and adjust their sensory profile to the high demands of the modern market.
cheese, additional culture, proteolysis, Lactobacillus, sensory properties, starter microflora, metabolism
1. Wang, F. Fatty acid profiles of milk from Holstein cows, Jersey cows, buffalos, yaks, humans, goats, camels, and donkeys based on gas chromatography–mass spectrometry / F. Wang [et al.] // Journal of dairy science. 2022. Vol. 105 № 2. R. 1687–1700. https://doi.org/10.3168/jds.2021-20750
2. Mach, F. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk / F. Mach [et al.] // Atherosclerosis. 2019. Vol. 290. R. 140–205. https://doi.org/10.1016/j.atherosclerosis.2019.08.014
3. Ference, B. A. Association of triglyceride-lowering LPL variants and LDL-C–lowering LDLR variants with risk of coronary heart disease / B. A. Ference [et al.] // Jama. 2019. Vol. 321. № 4. R. 364–373. https://doi.org/10.1001/jama.2018.20045
4. Jakobsen, M. U. Intake of dairy products and associations with major atherosclerotic cardiovascular diseases: a systematic review and metaanalysis of cohort studies / M. U. Jakobsen [et al.] // Scientific reports. 2021. Vol. 11. № 1. 1303. https://doi.org/10.1038/s41598-020-79708-x
5. Childs, J. L. Consumer perception of fat reduction in cheese / J. L. Childs, M. Drake // Journal of Sensory Studies. 2009. Vol. 24. № 6. R. 902–921. https://doi.org/10.1111/j.1745-459x.2009.00243.x
6. Wilkinson, M. G. Invited review: Starter lactic acid bacteria survival in cheese: New perspectives on cheese microbiology / M. G. Wilkinson, G. LaPointe // Journal of dairy science. 2020. Vol. 103. № 12. R. 10963–10985. https://doi.org/10.3168/jds.2020-18960
7. Nugroho, A. D. W. Growth, dormancy and lysis: the complex relation of starter culture physiology and cheese flavour formation / A. D. W. Nugroho, M. Kleerebezem, H. Bachmann // Current Opinion in Food Science. 2021. 39. R.22-30. https://doi.org/10.1016/j.cofs.2020.12.005
8. Gu, Y. Screening and Characterization of novel umami peptides in Cheddar cheese using peptidomics and bioinformatics approaches / Y. Gu [et al.] // LWT. 2024. Vol. 194. 115780. https://doi.org/10.1016/j.lwt.2024.115780
9. Andersen, L. T. Study of taste-active compounds in the watersoluble extract of mature Cheddar cheese / L. T. Andersen, Y. Ardö, W. L. Bredie // International Dairy Journal. 2010. Vol. 20. № 8. R. 528–536. https://doi.org/10.1016/j.idairyj.2010.02.00943
10. Ganesan, B. Amino Acid Catabolism and Its Relationship to Cheese Flavor Outcomes // Cheese. Chemistry, Physics and Microbiology / B. Ganesan, Bart C. Weimer. – UK: Academic Press, 2017. – R. 483–516. https://doi.org/10.1016/B978-0-12-417012-4.00019-3
11. Budak, Ş. Ö. Role of microbial cultures and enzymes during cheese production and ripening // Microbial cultures and enzymes in dairy technology / Ş. Ö. Budak [et al]. IGI Global, 2018. – R. 182–203. https://doi.org/10.4018/978-1-5225-5363-2.ch010
12. Mazguene, S. Lactic acid bacteria metabolism: Mini-review / S. Mazguene // Current Nutrition & Food Science. 2023. Vol. 19. № 2. R. 94–104. https://doi.org/10.2174/1573401318666220527124256
13. Broadbent, J. R. Influence of adjunct use and cheese microenvironment on nonstarter bacteria in reduced-fat Cheddar-type cheese / J. R. Broadbent [et al.] // Journal of Dairy Science. 2003. Vol. 86. № 9. R. 2773–2782. https://doi.org/10.3168/jds.S0022-0302(03)73874-0
14. Ahmed, M. E. Influence of probiotic adjunct cultures on the characteristics of low-fat Feta cheese / M. E. Ahmed [et al.] // Food Science & Nutrition. 2021. Vol. 9. № 3. R. 1512–1520. https://doi.org/10.1002/fsn3.2121
15. Bergamini, C. V. Influence of probiotic bacteria in the proteolysis profile of a semi-hard cheese / C. V. Bergamini, E. Hynes, C. A. Zalazar // International Dairy Journal. 2006. Vol. 16. R. 856–866. https://doi.org/10.1016/j.idairyj.2005.09.004
16. Ong, L. Proteolytic pattern and organic acid profiles of probiotic Cheddar cheese as influenced by probiotic strains of Lactobacillus acidophilus, Lb. paracasei, Lb. casei or Bifidobacterium sp. / L. Ong, A. Henriksson, N. P. Shah // International Dairy Journal. 2007. Vol. 17. R. 67–78. https://doi.org/10.1016/j.idairyj.2005.12.009
17. Thage, B. V. Aroma development in semi-hard reduced-fat cheese inoculated with Lactobacillus paracasei with different aminotransferase profiles / B. V. Thage [et al.] // International Dairy Journal. 2005. Vol. 15. R. 795–805. https://doi.org/10.1016/j.idairyj.2004.08.026
18. Stefanovic, E. Genetic, enzymatic and metabolite profiling of the Lactobacillus casei group reveals strain biodiversity and potential applications for flavour diversification / E. Stefanovic [et al.] // Journal of Applied Microbiology. 2017. Vol. 122. № 5. R. 1245–1261. https://doi.org/10.1111/jam.13420
19. Bancalari, E. Lactobacillus paracasei 4341 as adjunct culture to enhance flavor in short ripened Caciotta-type cheese / E. Bancalari [et al.] // Food research international. 2020. Vol. 135. 109284. https://doi.org/10.1016/j.foodres.2020.109284
20. Antonsson, M. Lactobacillus strains isolated from Danbo cheese as adjunct cultures in a cheese model system / M. Antonsson, G. Molin, Y. Ardö // International Journal of Food Microbiology. 2003. Vol. 85. № 1-2. R. 159–169. https://doi.org/10.1016/S0168-1605(02)00536-6
21. Liu, S. Q. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations / S. Q. Liu // International journal of Food Microbiology. 2003. Vol. 83. № 2. R. 115–131. https://doi.org/10.1016/S0168-1605(02)00366-5
22. Fenelon, M. A. Comparison of different bacterial culture systems for the production of reduced-fat Cheddar cheese / M. A. Fenelon [et al.] // International Journal of Dairy Technology. 2002. Vol. 55. № 4. R. 194–203. https://doi.org/10.1046/j.1471-0307.2002.00067.x
23. Katsiari, M. C. Improvement of sensory quality of low-fat Kefalograviera-type cheese with commercial adjunct cultures / M. C. Katsiari, L. P. Voutsinas, E. Kondyli // International Dairy Journal. 2002. Vol. 12. № 9. R. 757–764. https://doi.org/10.1016/S0958-6946(02)00066-3
24. Kondyli, E. Free fatty acids and volatile compounds in low-fat Kefalograviera-type cheese made with commercial adjunct culture / E. Kondyli [et al.] // International Dairy Journal. 2003. Vol. 13. № 1. R. 47–54. https://doi.org/10.1016/S0958-6946(02)00144-9
25. Kondyli, E. Lipolysis and volatile compounds in low-fat Kefalograviera-type cheese made with commercial special starter cultures / E. Kondyli [et al.] // Food Chemistry. 2003. Vol. 82. № 2. R. 203–209. https://doi.org/10.1016/S0308-8146(02)00513-7
26. Skeie, S. Improvement of the quality of low-fat cheese using a two-step strategy / S. Skeie [et al.] // International Dairy Journal. 2013. Vol. 33. № 2. R. 153–162. https://doi.org/10.1016/j.idairyj.2013.04.003
27. Ramzan, M. Evaluation of volatile flavouring compounds in Cheddar cheese, manufactured by using Lactobacillus rhamnosus as an adjunct culture / M. Ramzan [et al.] // Journal of Agroalimentary Processes and Technologies. 2010. Vol. 16. № 2. R. 188–195.
28. Ningtyas, D. W. Flavour profiles of functional reduced-fat cream cheese: Effects of β-glucan, phytosterols, and probiotic L. rhamnosus / D. W. Ningtyas [et al.] // LWT. 2019. Vol. 105. R. 16–22. https://doi.org/10.1016/j.lwt.2019.01.063
29. Milesi, M. M. Two strains of nonstarter lactobacilli increased the production of flavor compounds in soft cheeses / M. M. Milesi [et al.] // Journal of Dairy Science. 2010. Vol. 93. № 11. R. 5020–5031. https://doi.org/10.3168/jds.2009-3043
30. Zhang, X. The effects of Lactobacillus plantarum combined with inulin on the physicochemical properties and sensory acceptance of low-fat Cheddar cheese during ripening / X. Zhang, [et al.] // International Dairy Journal. 2021. Vol. 115. 104947. https://doi.org/10.1016/j.idairyj.2020.104947
31. Di Cagno, R. Use of microparticulated whey protein concentrate, exopolysaccharide-producing Streptococcus thermophilus, and adjunct cultures for making low-fat Italian Caciotta-type cheese / R. Di Cagno [et al.] // Journal of Dairy Science. 2014. Vol. 97. № 1. R.72–84. https://doi.org/10.3168/jds.2013-7078
32. Zhang, H. The enzyme gene expression of protein utilization and metabolism by Lactobacillus helveticus CICC 22171 / H. Zhang [et al.] // Microorganisms. 2022. Vol. 10. № 9. 1724. https://doi.org/10.3390/microorganisms10091724
33. Sadat-Mekmene, L. Simultaneous presence of PrtH and PrtH2 proteinases in Lactobacillus helveticus strains improves breakdown of the pure αs1-casein / L. Sadat-Mekmene [et al.] // Applied and Environmental Microbiology. 2011. Vol. 77. № 1. R. 179–186. https://doi.org/10.1128/AEM.01466-10
34. Zaravela, A. Effect of adjunct starter culture on the quality of reduced fat, white, brined goat cheese: part I. Assessment of chemical composition, proteolysis, lipolysis, texture and sensory attributes / A. Zaravela [et al.] // European Food Research and Technology. 2021. Vol. 247. R. 2211–2225. https://doi.org/10.1007/s00217-021-03780-4
35. Nateghi, L. Effects of different adjunct starter cultures on proteolysis of reduced fat Cheddar cheese during ripening / L. Nateghi // African Journal of Biotechnology. 2012. Vol. 11. № 61. 12491. https://doi.org/10.5897/AJB11.3359
36. Cuffia, F. Characterization of volatile compounds produced by Lactobacillus helveticus strains in a hard cheese model / F. Cuffia [et al.] // Food Science and Technology International. 2018. Vol. 24. № 1. R.67–77. https://doi.org/10.1177/1082013217728628
37. Sviridenko, G. M. Improvement of the organoleptic profile of cheeses with reduced calorie content by biotechnological means / G. M. Sviridenko [et al.] // International Journal of Dairy Technology. 2022. Vol. 75. № 2. R. 393–404. https://doi.org/10.1111/1471-0307.12846
38. Sviridenko, G. M. Uluchshenie organolepticheskih pokazateley syrov ponizhennoy zhirnosti za schet ispol'zovaniya v sostave zakvaski Lactobacillus casei / G. M. Sviridenko, V. A. Mordvinova, I. N. Delickaya, D. S. Vahrusheva // Syrodelie i maslodelie. 2021. № 1. S. 19–21. https://elibrary.ru/ppqpyv
39. Sviridenko, G. M. Vliyanie Lactobacillus helveticus na formirovanie potrebitel'skih pokazateley syrov s reducirovannoy kaloriynost'yu / G. M. Sviridenko, V. A. Mordvinova, I. N. Delickaya, D. S. Vahrusheva // Syrodelie i maslodelie. 2021. № 1. S. 29–31. https://elibrary.ru/hxhhrf
40. Vahrusheva, D. S. Vliyanie laktobacill na formirovanie organolepticheskogo profilya syrov ponizhennoy zhirnosti / D. S. Vahrusheva // Pischevye sistemy. 2021. T. 4. № 3S. S. 31–36. https://doi.org/10.21323/2618–9771- 2021-4-3S-31-36; https://elibrary.ru/bqwxjb