St. Petersburg, Russian Federation
Beijing, China
St. Petersburg, Russian Federation
Spatial thinking (spatial ability) is an important predictor of success in mathematics, engineering, science and other related fields. Spatial performance is related to a large number of factors, including socio-economic and biological influences. Strategies of spatial thinking, understood as the approach, consciously or unconsciously, chosen to solve a spatial problem, is one of the factors that contribute to overall performance. The literature discusses strategies for solving different spatial tasks, including mental rotation, spatial visualisation, navigation, and mechanical reasoning, which are partly overlapping but also have some distinct features. In this review, we have summarised more than one hundred studies published in leading international journals, identified the main trends, insights and limitations of these studies, and presented possible future directions of this research area. A special emphasis is placed on the contemporary methods for studying spatial strategies, including eye tracking, neuroimaging (EEG, fMRI, fNIRS), non-invasive brain stimulation, and tracking location in space (VR mazes, GPS data). The practical significance of this research is discussed. For example, identifying strategies optimal for performance in a specific task can benefit education, engineering psychology, logistics and usability.
spatial abilities, spatial intelligence, cognitive abilities, problem-solving strategies, visual imagery, verbal-analytical thinking
1. Hegarty M., Waller D. A. Individual differences in spatial abilities. The Cambridge handbook of visuospatial thinking, eds. Shah P., Miyake A. 1st ed. Cambridge University Press, 2005, 121-169. https://doi.org/10.1017/CBO9780511610448.005
2. Kell H. J., Lubinski D., Benbow C. P., Steiger J. H. Creativity and technical innovation: spatial ability’s unique role. Psychological Science, 2013, 24(9): 1831-1836. https://doi.org/10.1177/0956797613478615
3. Shea D., Lubinski D., Benbow C. Importance of assessing spatial ability in intellectually talented young adolescents: a 20-year longitudinal study. Journal of Educational Psychology, 2001, 93(3): 604-614. http://dx.doi.org/10.1037/0022-0663.93.3.604
4. Wai J., Lubinski D., Benbow C. P. Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 2009, 101(4): 817-835. https://doi.org/10.1037/a0016127
5. Eme P.-E., Marquer J. Individual strategies in a spatial task and how they relate to aptitudes. European Journal of Psychology of Education, 1999, 14(1): 89-108.
6. Was C., Sansosti F., Morris B. Eye-Tracking technology applications in educational research. IGI Global, 2017, 370.
7. Lobben A. K. Tasks, strategies, and cognitive processes associated with navigational map reading: a review perspective. The Professional Geographer, 2004, 56(2): 270-281. https://doi.org/10.1111/j.0033-0124.2004.05602010.x
8. Roberts M. J., Erdos G. Strategy selection and metacognition. Educational Psychology, 1993, 13(3-4): 259-266. https://doi.org/10.1080/0144341930130304
9. Rimfeld K., Shakeshaft N. G., Malanchini M., Rodic M., Selzam S., Schofield K., Dale P. S., Kovas Y., Plomin R. Phenotypic and genetic evidence for a unifactorial structure of spatial abilities. Proceedings of the National Academy of Sciences, 2017, 114(10): 2777-2782. https://doi.org/10.1073/pnas.1607883114
10. Esipenko E. A., Maslennikova E. P., Budakova A. V., Sharafieva K. R., Ismatullinac V. I., Feklicheva I. V., Chipeeva N. A., Soldatova E. L., Borodaeva Z. E., Rimfeld K., Shakeshaft N. G., Malanchinie M., Malykh S. B. Comparing spatial ability of male and female students completing humanities vs. technical degrees. Psychology in Russia: State of the Art, 2018, 11(4): 37-49. http://dx.doi.org/10.11621/pir.2018.0403
11. Malanchini M., Rimfeld K., Shakeshaft N. G., McMillan A., Schofield K. L., Rodic M., Rossi V., Kovas Y., Dale P. S., Tucker-Drob E. M., Plomin R. Evidence for a unitary structure of spatial cognition beyond general intelligence. Npj Science of Learning, 2020, 5(1). https://doi.org/10.1038/s41539-020-0067-8
12. Likhanov M., Maslennikova E., Costantini G., Budakova A., Esipenko E., Ismatullina V., Kovas Y. This is the way: network perspective on targets for spatial ability development programmes. British Journal of Educational Psychology, 2022, 92(4): 1597-1620. https://doi.org/10.1111/bjep.12524
13. Likhanov M. V., Ismatullina V. I., Fenin A. Y., Wei W., Rimfeld K., Maslennikova E. P., Esipenko E. A., Sharafieva K. R., Feklicheva I. V., Chipeeva N. A., Budakova A. V., Soldatova E. L., Zhou X., Kovas Y. V. The factorial structure of spatial abilities in Russian and Chinese students. Psychology in Russia: State of the Art, 2018, 11(4): 96-114. https://doi.org/10.11621/pir.2018.0407
14. Pellegrino J. W., Alderton D. L., Shute V. J. Understanding spatial ability. Educational Psychologist, 1984, 19(3): 239-253.
15. Barrett F. S., Grimm K. J., Robins R. W., Wildschut T., Sedikides C., Janata P. Music-evoked nostalgia: affect, memory, and personality. Emotion, 2010, 10(3): 390-403. https://doi.org/10.1037/a0019006
16. Nazareth A., Killick R., Dick A. S., Pruden S. M. Strategy selection versus flexibility: using eye-trackers to investigate strategy use during mental rotation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019, 45(2): 232-245. https://psycnet.apa.org/doi/10.1037/xlm0000574
17. Reilly D., Neumann D. L. Gender-role differences in spatial ability: a meta-analytic review. Sex Roles, 2013, 68(9): 521-535. http://dx.doi.org/10.1007/s11199-013-0269-0
18. Lauer J. E., Yhang E., Lourenco S. F. The development of gender differences in spatial reasoning: a meta-analytic review. Psychological Bulletin, 2019, 145(6): 537-565. https://psycnet.apa.org/doi/10.1037/bul0000191
19. Voyer D., Voyer S., Bryden M. P. Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2): 250-270. https://doi.org/10.1037/0033-2909.117.2.250
20. Linn M. C., Petersen A. C. Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Development, 1985, 56(6): 1479-1498. https://doi.org/10.2307/1130467
21. Tsigeman E. S., Likhanov M. V., Budakova A. V., Akmalov A., Sabitov I., Alenina E., Bartseva K., Kovas Y. Persistent gender differences in spatial ability, even in STEM experts. Heliyon, 2023, 9(4). https://doi.org/10.1016/j.heliyon.2023.e15247
22. Budakova A. V., Likhanov M. V., Toivainen T., Zhurbitskiy A. V., Sitnikova E. O., Bezrukova E. M., Kovas Y. Measuring spatial ability for talent identification, educational assessment, and support: evidence from adolescents with high achievement in science, arts, and sports. Psychology in Russia: State of the Art, 14(2): 59-85. https://doi.org/10.11621/pir.2021.0205
23. Glueck J., Fitting S. Spatial strategy selection: interesting incremental information. International Journal of Testing, 2003, 3(3): 293-308. https://psycnet.apa.org/doi/10.1207/S15327574IJT0303_7
24. Janssen A. B., Geiser C. On the relationship between solution strategies in two mental rotation tasks. Learning and Individual Differences, 2010, 20(5): 473-478. https://doi.org/10.1016/j.lindif.2010.03.002
25. Shepard R. N., Metzler J. Mental rotation of three-dimensional objects. Science, 1971, 171(3972): 701-703. https://doi.org/10.1126/science.171.3972.701
26. Schultz K. The contribution of solution strategy to spatial performance. Canadian Journal of Psychology, 1991, 45(4): 474-491. https://psycnet.apa.org/doi/10.1037/h0084301
27. Maresch G. Strategies for assessing spatial ability tasks. Journal for Geometry and Graphics, 2014, 18(1): 125-132.
28. Hegarty M. Components of spatial intelligence. Psychology of Learning and Motivation, 2010, 52: 265-297. https://doi.org/10.1016/S0079-7421(10)52007-3
29. Kosslyn S. M., Ganis G., Thompson W. L. Neural foundations of imagery. Nature Reviews Neuroscience, 2001, 2(9): 635-642. https://doi.org/10.1038/35090055
30. Tomasino B., Gremese M. Effects of stimulus type and strategy on mental rotation network: an activation likelihood estimation meta-analysis. Frontiers in Human Neuroscience, 2016, 9. https://doi.org/10.3389/fnhum.2015.00693
31. Flusberg S. J., Jenkins G. W., Boroditsky L. Motor affordances in mental rotation: when minds reflect the world and when they go beyond. 2009. URL: https://escholarship.org/uc/item/1k75d054 (accessed 9 Oct 2023).
32. Rilea S. L. Sex and hemisphere differences when mentally rotating meaningful and meaningless stimuli. Laterality, 2008, 13(3): 217-233. https://doi.org/10.1080/13576500701809846
33. Lamp G., Alexander B., Laycock R., Crewther D. P., Crewther1 S. G. Mapping of the underlying neural mechanisms of maintenance and manipulation in visuo-spatial working memory using an n-back mental rotation task: a functional magnetic resonance imaging study. Frontiers in Behavioral Neuroscience, 2016, 10. https://doi.org/10.3389/fnbeh.2016.00087
34. McGee M. G. Human spatial abilities: psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 1979, 86(5): 889-918. https://psycnet.apa.org/doi/10.1037/0033-2909.86.5.889
35. Pletzer B., Steinbeisser J., Van Laak L., Harris T. Beyond biological sex: interactive effects of gender role and sex hormones on spatial abilities. Frontiers in Neuroscience, 2019, 13. https://doi.org/10.3389/fnins.2019.00675
36. Voyer D., Voyer S. D., Saint-Aubin J. Sex differences in visual-spatial working memory: a meta-analysis. Psychonomic Bulletin and Review, 2017, 24: 307-334. https://doi.org/10.3758/s13423-016-1085-7
37. Silverman I., Choi J., Peters M. The hunter-gatherer theory of sex differences in spatial abilities: data from 40 countries. Archives of Sexual Behavior, 2007, 36: 261-268. https://doi.org/10.1007/s10508-006-9168-6
38. Voyer D., Saint-Aubin J., Altman K., Doyle R. A. Sex differences in tests of mental rotation: direct manipulation of strategies with eye-tracking. Journal of Experimental Psychology: Human Perception and Performance, 2020, 46(9): 871-889. https://doi.org/10.1037/xhp0000752
39. Choi J., L’Hirondelle N. Object location memory: a direct test of the verbal memory hypothesis. Learning and Individual Differences, 2005, 15(3): 237-245. https://doi.org/10.1016/j.lindif.2005.02.001
40. Toivainen T., Papageorgiou K. A., Tosto M. G., Kovas Y. Sex differences in non-verbal and verbal abilities in childhood and adolescence. Intelligence, 2017, 64: 81-88. https://doi.org/10.1016/j.intell.2017.07.007
41. Lu Y., Zhang X., Zhou X. Assessing gender difference in mathematics achievement. School Psychology International, 2023, 44(5): 553-567. https://doi.org/10.1177/01430343221149689
42. Wang L., Carr M. Working memory and strategy use contribute to gender differences in spatial ability. Educational Psychologist, 2014, 49(4): 261-282. http://dx.doi.org/10.1080/00461520.2014.960568
43. Wang L., Carr M. Gender, working memory, strategy use, and spatial ability. North American Journal of Psychology, 2019, 21(3): 601-618. https://psycnet.apa.org/doi/10.1080/00461520.2014.960568
44. Glück J., Dünser A., Steinbügl K., Kaufmann H. Warning: subtle aspects of strategy assessment may affect correlations among spatial tests. Perceptual and Motor Skills, 2007, 104(1): 123-140. https://doi.org/10.2466/pms.104.1.123-140
45. Johnson A. M. Speed of mental rotation as a function of problem-solving strategies. Perceptual and Motor Skills, 1990, 71(3): 803-806. https://doi.org/10.2466/pms.1990.71.3.803
46. Shepard R. N., Feng C. A chronometric study of mental paper folding. Cognitive Psychology, 3(2): 228-243. https://doi.org/10.1016/0010-0285(72)90005-9
47. Gardony A. L., Taylor H. A., Brunyé T. T. What does physical rotation reveal about mental rotation? Psychological Science, 2014, 25(2): 605-612. https://doi.org/10.1177/0956797613503174
48. Schmitz S. Gender-related strategies in environmental development: effects of anxiety on wayfinding in and representation of a three-dimensional maze. Journal of Environmental Psychology, 1997, 17(3): 215-228. https://doi.org/10.1006/jevp.1997.0056
49. Ramírez-Uclés I. M., Ramírez-Uclés R. Gender differences in visuospatial abilities and complex mathematical problem solving. Frontiers in Psychology, 2020, 11. https://doi.org/10.3389/fpsyg.2020.00191
50. Khooshabeh P., Hegarty M., Shipley T. F. Individual differences in mental rotation: piecemeal versus holistic processing. Experimental Psychology, 2013, 60(3): 164-171. https://doi.org/10.1027/1618-3169/a000184
51. Bilge A. R., Taylor H. A. Framing the figure: mental rotation revisited in light of cognitive strategies. Memory & Cognition, 2017, 45(1): 63-80. https://doi.org/10.3758/s13421-016-0648-1
52. Pezaris E., Casey M. B. Girls who use "masculine" problem-solving strategies on a spatial task: proposed genetic and environmental factors. Brain and Cognition, 1991, 17(1): 1-22. https://doi.org/10.1016/0278-2626(91)90062-D
53. Moreau D. The role of motor processes in three-dimensional mental rotation: shaping cognitive processing via sensorimotor experience. Learning and Individual Differences, 2012, 22(3): 354-359. https://doi.org/10.1016/j.lindif.2012.02.003
54. Moreau D., Jérome C., Mansy-Dannay A., Guerrien A. Enhancing spatial ability through sport practice: evidence for an effect of motor training on mental rotation performance. Journal of Individual Differences, 2012, 33(2): 83-88. https://psycnet.apa.org/doi/10.1027/1614-0001/a000075
55. Tzuriel D., Egozi G. Gender differences in spatial ability of young children: the effects of training and processing strategies: gender differences in spatial ability. Child Development, 2010, 81(5): 1417-1430. https://doi.org/10.1111/j.1467-8624.2010.01482.x
56. Stieff M., Dixon B. L., Ryu M., Kumi B. C. Strategy training eliminates sex differences in spatial problem solving in a STEM domain. Journal of Educational Psychology, 2014, 106(2): 390-402. http://dx.doi.org/10.1037/a0034823
57. Hawes Z. C. K., Gilligan-Lee K. A., Mix K. S. Effects of spatial training on mathematics performance: a meta-analysis. Developmental Psychology, 2022, 58(1): 112-137. https://doi.org/10.1037/dev0001281
58. Cheung C.-N., Sung J. Y., Lourenco S. F. Does training mental rotation transfer to gains in mathematical competence? Assessment of an at-home visuospatial intervention. Psychological Research, 2020, 84(7): 2000-2017. https://doi.org/10.1007/s00426-019-01202-5
59. Hegarty M. Mental animation: inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1992, 18(5): 1084-1102. https://doi.org/10.1037//0278-7393.18.5.1084
60. Just M. A., Carpenter P. A. Cognitive coordinate systems: accounts of mental rotation and individual differences in spatial ability. Psychological Review, 1985, 92(2): 137-172.
61. Khooshabeh P., Hegarty M. Representations of shape during mental rotation. Cognitive Shape Processing: Proc. 2010 AAAI Spring Symposium, Technical Report SS-10-02, Stanford, 22-24 Mar 2010. AAAI, 2010.
62. Corballis M. C. Mental rotation and the right hemisphere. Brain and Language, 1997, 57(1): 100-121. https://doi.org/10.1006/brln.1997.1835
63. Li Y., Kong F., Ji M., Luo Y., Lan J., You X. Shared and distinct neural bases of large- and small-scale spatial ability: a coordinate-based activation likelihood estimation meta-analysis. Frontiers in Neuroscience, 2019, 12. https://doi.org/10.3389/fnins.2018.01021
64. Osuagwu B. A., Vuckovic A. Similarities between explicit and implicit motor imagery in mental rotation of hands: an EEG study. Neuropsychologia, 2014, 65: 197-210. https://doi.org/10.1016/j.neuropsychologia.2014.10.029
65. Bode S., Koeneke S., Jäncke L. Different strategies do not moderate primary motor cortex involvement in mental rotation: a TMS study. Behavioral and Brain Functions, 2007, 3. https://doi.org/10.1186/1744-9081-3-38
66. Heil M., Rolke B. Toward a chronopsychophysiology of mental rotation. Psychophysiology, 2002, 39(4): 414-422.
67. Krause D., Richert B., Weigelt M. Neurophysiology of embodied mental rotation: event-related potentials in a mental rotation task with human bodies as compared to alphanumeric stimuli. European Journal of Neuroscience, 2021, 54(4): 5384-5403. https://doi.org/10.1111/ejn.15383
68. Ter Horst A. C., Jongsma M. L. A., Janssen L. K., Van Lier R., Steenbergen B. Different mental rotation strategies reflected in the rotation related negativity. Psychophysiology, 2012, 49(4): 566-573. https://doi.org/10.1111/j.1469-8986.2011.01322.x
69. Ter Horst A. C., Van Lier R., Steenbergen B. Mental rotation strategies reflected in event-related (de)synchronization of alpha and mu power. Psychophysiology, 2013, 50(9): 858-863. https://doi.org/10.1111/psyp.12076
70. Habacha H., Mallek M., Moreau D., Khalfallah S., Mkaouer B. Differences in mental rotation strategies depend on the level of motor expertise. The American Journal of Psychology, 2022, 135(3): 325-336. https://doi.org/10.5406/19398298.135.3.06
71. Feng T., Li Y. The time course of event-related brain potentials in athletes’ mental rotation with different spatial transformations. Frontiers in Behavioral Neuroscience, 2021, 15. https://doi.org/10.3389/fnbeh.2021.675446
72. Bohbot V. D., Lerch J., Thorndycraft B., Iaria G., Zijdenbos A. P. Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. Journal of Neuroscience, 2007, 27(38): 10078-10083. https://doi.org/10.1523/JNEUROSCI.1763-07.2007
73. West G. L., Zendel B. R., Konishi K., Benady-Chorney J., Bohbot V. D., Peretz I., Belleville S. Playing Super Mario 64 increases hippocampal grey matter in older adults. PLoS One, 2017, 12(12). https://doi.org/10.1371/journal.pone.0187779
74. Kühn S., Gleich T., Lorenz R. C., Lindenberger U., Gallinat J. Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Molecular Psychiatry, 2014, 19(2): 265-271. https://doi.org/10.1038/mp.2013.120
75. Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S. J., Frith C. D. Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 2000, 97(8): 4398-4403. https://doi.org/10.1073/pnas.070039597
76. Brunec I. K., Robin J., Patai E. Z., Ozubko J. D., Javadi A.-H., Barense M. D., Spiers H. J., Moscovitch M. Cognitive mapping style relates to posterior-anterior hippocampal volume ratio. Hippocampus, 2019, 29(8): 748-754. https://doi.org/10.1002/hipo.23072
77. Boccia M., Nemmi F., Guariglia C. Neuropsychology of environmental navigation in humans: review and meta-analysis of fMRI studies in healthy participants. Neuropsychology Review, 2014, 24(2): 236-251. https://doi.org/10.1007/s11065-014-9247-8
78. Levinson S. C. Language and space. Annual Review of Anthropology, 1996, 25(1): 353-382. https://psycnet.apa.org/doi/10.1146/annurev.anthro.25.1.353
79. Anggraini D., Glasauer S., Wunderlich K. Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation. Scientific Reports, 2018, 8(1). https://doi.org/10.1038/s41598-018-28241-z
80. Taube J. S., Valerio S., Yoder R. M. Is navigation in virtual reality with fMRI really navigation? Journal of Cognitive Neuroscience, 2013, 25(7): 1008-1019. https://doi.org/10.1162/jocn_a_00386
81. Herrmann M. J., Ehlis A.-C., Wagener A., Jacob C. P., Fallgatter A. J. Near-infrared optical topography to assess activation of the parietal cortex during a visuo-spatial task. Neuropsychologia, 2005, 43(12): 1713-1720. https://doi.org/10.1016/j.neuropsychologia.2005.02.011
82. Ning M., Yücel M. A., Von Lühmann A., Boas D. A., Sen K. Decoding attended spatial location during complex scene analysis with fNIRS. BioRxiv, 2022. https://doi.org/10.1101/2022.09.06.506821
83. Hou X., Xiao X., Gong Y., Li Z., Chen A., Zhu1 C. Functional near-infrared spectroscopy neurofeedback enhances human spatial memory. Frontiers in Human Neuroscience, 2021, 15. https://doi.org/10.3389/fnhum.2021.681193
84. Yeo S. S., Jang T. S., Yun S. H. Sensorimotor adaptation in spatial orientation task: a fNIRS study. Scientific Reports, 2023, 13(1). https://doi.org/10.1038/s41598-023-42416-3
85. Hoppe S., Loetscher T., Morey S. A., Bulling A. Eye movements during everyday behavior predict personality traits. Frontiers in Human Neuroscience, 2018, 12. https://doi.org/10.3389/fnhum.2018.00105
86. Franchak J. M., Adolph K. E. Visually guided navigation: head-mounted eye-tracking of natural locomotion in children and adults. Vision Research, 2010, 50(24): 2766-2774. https://doi.org/10.1016/j.visres.2010.09.024
87. Franchak J. M., Kretch K. S., Soska K. C., Adolph K. E. Head-mounted eye-tracking: a new method to describe infant looking. Child Development, 2011, 82(6): 1738-1750. https://doi.org/10.1111%2Fj.1467-8624.2011.01670.x
88. Scheer C., Mattioni Maturana F., Jansen P. Sex differences in a chronometric mental rotation test with cube figures: a behavioral, electroencephalography, and eye-tracking pilot study. Neuroreport, 2018, 29(10): 870-875. https://doi.org/10.1097%2FWNR.0000000000001046
89. Tang Z., Liu X., Huo H., Tang M., Qiao X., Chen D., Dong Y., Fan L., Wang J., Du X., Guo J., Fan Y. Sex differences in eye movements and neural oscillations during mental rotation in virtual reality. Medicine in Novel Technology and Devices, 2023, 18. https://doi.org/10.1016/j.medntd.2023.100233
90. Andersen N. E., Dahmani L., Konishi K., Bohbot V. D. Eye tracking, strategies, and sex differences in virtual navigation. Neurobiology of Learning and Memory, 2012, 97(1): 81-89. https://doi.org/10.1016/j.nlm.2011.09.007
91. Harris T., Hagg J., Pletzer B. Eye-movements during navigation in a virtual environment: sex differences and relationship to sex hormones. Frontiers in Neuroscience, 2022, 16. https://doi.org/10.3389/fnins.2022.755393
92. Heil M., Jansen-Osmann P. Sex differences in mental rotation with polygons of different complexity: do men utilize holistic processes whereas women prefer piecemeal ones? Quarterly Journal of Experimental Psychology, 2008, 61(5): 683-689. https://doi.org/10.1080/17470210701822967
93. Boone A. P., Gong X., Hegarty M. Sex differences in navigation strategy and efficiency. Memory & Cognition, 2018, 46 (6): 909-922. https://doi.org/10.3758/s13421-018-0811-y
94. Clemenson G. D., Wang L., Mao Z., Stark S. M., Stark C. E. L. Exploring the spatial relationships between real and virtual experiences: what transfers and what doesn’t. Frontiers in Virtual Reality, 2020, 1. https://doi.org/10.3389/frvir.2020.572122
95. Schöberl F., Zwergal A., Brandt T. Testing navigation in real space: contributions to understanding the physiology and pathology of human navigation control. Frontiers in Neural Circuits, 2020, 14. https://doi.org/10.3389/fncir.2020.00006
96. Müller S. R., Bayer J. B., Ross M. Q., Mount J., Stachl C., Harari G. M., Chang Y.-J., Le H. T. K. Analyzing GPS data for psychological research: a tutorial. Advances in Methods and Practices in Psychological Science, 2022, 5(2). https://doi.org/10.1177/25152459221082680
97. Bongiorno C., Zhou Y., Kryven M., Theurel D., Rizzo A., Santi P., Tenenbaum J., Ratti C. Vector-based pedestrian navigation in cities. Nature Computational Science, 2021, (1): 678-685. https://doi.org/10.1038/s43588-021-00130-y
98. Huang W., Wang L. Towards big data behavioral analysis: rethinking GPS trajectory mining approaches from geographic, semantic, and quantitative perspectives. ARIN, 2022, 1(7). https://doi.org/10.1007/s44223-022-00011-y
99. He C., Hegarty M. How anxiety and growth mindset are linked to navigation ability: impacts of exploration and GPS use. Journal of Environmental Psychology, 2020, 71. https://doi.org/10.1016/j.jenvp.2020.101475
100. Malanchini M., Rimfeld K., Shakeshaft N. G., Rodic M., Schofield K., Selzam S., Dale P. S., Petrill S. A., Kovas Y. The genetic and environmental aetiology of spatial, mathematics and general anxiety. Scientific Reports, 2017, 7. https://doi.org/10.1038/srep42218
101. Lanini-Maggi S., Hilton C., Fabrikant S. I. Limiting the reliance on navigation assistance with navigation instructions containing emotionally salient narratives for confident wayfinding. Journal of Environmental Psychology, 2023, 91. https://doi.org/10.1016/j.jenvp.2023.102151
102. Uttal D. H., Meadow N. G., Tipton E., Hand L. L., Alden A. R., Warren C., Newcombe N. S. The malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin, 2013, 139(2): 352-402. https://doi.org/10.1037/a0028446
103. Nguyen N., Mulla A., Nelson A. J., Wilson T. D. Visuospatial anatomy comprehension: the role of spatial visualization ability and problem-solving strategies. Anatomical Sciences Education, 2014, 7(4): 280-288. https://doi.org/10.1002/ase.1415
104. Stieff M., Ryu M., Dixon B., Hegarty M. The role of spatial ability and strategy preference for spatial problem solving in organic chemistry. Journal of Chemical Education, 2012, 89(7): 854-859. https://doi.org/10.1021/ed200071d