ALTERNATIVE LOW-CALORIE SWEETENER FOR CANNED MILK
Abstract and keywords
Abstract (English):
This paper introduces a low-calorie canned dairy product with intermediate moisture, produced by recombination. Allulose served as an alternative to sucrose. Its sweetness is comparable to sucrose (70%) but the calorie content is 400 times lower (1 kcal per 100 g). The rational percentage of allulose was 30–40%. The substitution of ≤30% failed to reduce the calorie content. The substitution of ≥40% spoiled the sensory profile of the finished product. The canned dairy product underwent a number of physicochemical and microbiological tests. The physicochemical parameters were reliable during the entire storage period when 30–40% sucrose was replaced with allulose. The production process was represented as a process flow diagram. The canned milk retained its original sensory profile for 18 months, lactose crystal growth staying below 15 μm. No lactose sedimentation and thickening were observed, and the microbiological parameters remained standard. Allulose reduced the energy value by 14.9% (30% replacement) and 20.1% (40% replacement).

Keywords:
canned milk, sucrose, allulose, artificial sweetener, reduced caloric content, recombination, storage capacity
Text
Text (PDF): Read Download
References

1. Hu, M. Bioproduction of D-allulose: Properties, applications, purification, and futureperspectives / M. Hu [et al.] // Comprehensive Reviews in Food Science and Food Safety. 2021. Vol. 20(6). R. 6012–6026. https://doi.org/10.1111/1541-4337.12859

2. Jiang, S. Review on D-allulose: In vivo metabolism, catalyticmechanism, engineering strain construction, bioproduction technology / S. Jiang [et al.] // Frontiers in Bioengineering and Biotechnology. 2020. Vol. 8. 26. https://doi.org/10.3389/fbioe.2020.00026

3. Patel, S. N. D-Allulose 3-epimerase of Bacillus sp. origin manifests profuse heat-stability and noteworthy potential of D-fructose epimerization / S. N. Patel, G. Kaushal, S. P. Singh // Microbial Cell Factories. 2021. Vol. 20(1). 60. https://doi.org/10.1186/s12934-021-01550-1

4. Ates, E. G. In vitro digestibility of rare sugar (D‐allulose) added pectin–soy protein gels / E. G. Ates, E. B. Ozvural, M. H. Oztop // International Journal of Food Science & Technology. 2021. Vol. 56(7). P. 3421–3431. https://doi.org/10.1111/ijfs.14966

5. Ates, E. G. Understanding the role of D-Allulose and soy protein addition in pectin gels / E. G. Ates, E. B. Ozvural, M. H. Oztop // Journal of Applied Polymer Science. 2021. Vol. 138(8). 49885. https://doi.org/10.1002/app.49885

6. Xia, Y. Research advances of D-allulose: An overview of physiological functions, enzymatic biotransformation technologies, and production processes / Yu. Xia [et al.] // Foods. 2021. Vol. 10(9). 2186. https://doi.org/10.3390/foods10092186

7. Van Laar, A. D. E. Rare mono- and disaccharides as healthy alternative for traditional sugars and sweeteners? / A. D. E. Van Laar, C. Grootaert, J. Van Camp // Critical Reviews in Food Science and Nutrition. 2021. Vol. 61(5). P. 713–741. https://doi.org/10.1080/10408398.2020.1743966

8. Wang, Y. Biocatalytic synthesis of D-allulose using novel D-tagatose 3-epimerase from Christensenella minuta / Y. Wang [et al.] // Frontiers in Chemistry. 2020. Vol. 8. 622325. https://doi.org/10.3389/fchem.2020.622325

9. Wei, H. Expression of D-psicose3-epimerase from Clostridium bolteae and Dorea sp. and whole-cell production of D-psicose in Bacillus subtilis / H. Wei [et al.] // Annals of microbiology. 2020. Vol. 70(1). R. 1–8. https://doi.org/10.1186/s13213-020-01548-x

10. Tapia, M. S. Effects of water activity (aw) on microbial stability as a hurdle in food preservation / M. S. Tapia [et al.] // Water activity in foods: Fundamentals and applications. Ed. by G. V. Barbosa-Cánovas [et al.]. – John Wiley & Sons, 2020. – P. 323–355. https://doi.org/10.1002/9781118765982.ch14

11. Petrov, S. M. Monosaharid allyuloza kak zdorovaya al'ternativa tradicionnym saharam i podslastitelyam / S. M. Petrov, N. M. Podgornova, V. I. Tuzhilkin // Sahar. 2023. № 3. S. 36–41. https://doi.org/10.24412/2413-5518-2023-3-36-41; https://elibrary.ru/kwflvx

12. Nurtazina, A. U. Ozhirenie, saharnyy diabet i arterial'naya gipertenziya - global'nye problemy sovremennogo obschestva. Obzor literatury / A. U. Nurtazina [i dr.] // Nauka i zdravoohranenie. 2021. T. 23, № 5. S. 149–160. https://doi.org/10.34689/SH.2021.23.5.017; https://elibrary.ru/febtmq

13. Kurenkov, S. A. Issledovanie fiziko-himicheskih svoystv al'ternativnogo saharozamenitelya dlya proizvodstva konservirovannyh molochnyh produktov s saharom / S. A. Kurenkov, L. A. Kurenkova, A. I. Gnezdilova // Izvestiya vysshih uchebnyh zavedeniy. Pischevaya tehnologiya. 2024. № 5-6. S. 21–26. https://doi.org/10.34689/SH.2021.23.5.017; https://elibrary.ru/febtmq

14. Kurenkova, L. A. Izuchenie vozmozhnosti zameny saharozy al'ternativnym osmoticheski deyatel'nym veschestvom v tehnologii koncentrirovannyh molochnyh konservov s saharom / L. A. Kurenkova, S. A. Kurenkov // Molochnohozyaystvennyy vestnik. 2023. № 4(52). S. 189–198. https://doi.org/10.52231/2225-4269_2023_4_189; https://elibrary.ru/pjxdlw

Login or Create
* Forgot password?