EFFECT OF BIOLOGICAL A CTIVITY OF LACTIC A CID MICROORGANISMS ON ANTIOXIDANT PROFILE OF FERMENTED DAIRY PRODUCTS
Abstract and keywords
Abstract (English):
Antioxidants support human immune system by providing protection against oxidation products caused by free radicals and reactive oxygen species. The human body has a native system of protection against oxidative stress; however, antioxidants may also be acquired with food. Plant foods are rich in direct-acting antioxidants; fermented dairy products also possess a rather high antioxidant potential. Lactic fermentation synthesizes biologically active substances, some of which are known for their antioxidant properties, e.g., group B vitamins. Although they are not direct-acting antioxidants, these vitamins improve the native antioxidant defense system, which means they are to be present in human diet in sufficient quantities. Amino acids provide the synthesis of glutathione, thus maintaining the native defense system and its action against oxidative stress. This review covered scientific and technical publications on the biological activity of various species and strains of lactic acid microorganisms able to improve the antioxidant potential of dairy products, fortifying them with vitamins and amino acids. The authors also compared Lactobacillus acidophilus and Streptococcus thermophilus as means of improving the antioxidant potential of fermented dairy products in situ by increasing the content of vitamins and amino acids.

Keywords:
milk, lactic acid microorganisms, fermented dairy products, vitamins, amino acids, antioxidant activity
Text
Text (PDF): Read Download
References

1. Rozhkova, I. V. Kefir - probiotik / I. V. Rozhkova // Aktual'nye voprosy molochnoy promyshlennosti, mezhotraslevye tehnologii i sistemy upravleniya kachestvom. 2020. T. 1, № 1(1). S. 451–456. https://doi.org/10.37442/978-5-6043854-1-8-2020-1-451-456; https://www.elibrary.ru/vryyrs

2. Donskaya, G. A. Antioksidantnye svoystva moloka i molochnyh produktov: obzor / G. A. Donskaya // Pischevaya promyshlennost'. 2020. № 12. S. 86–91. https://doi.org/10.24411/0235-2486-2020-10150; https://www.elibrary.ru/xncfer

3. Zobkova, Z. S. Kislomolochnye produkty kak sostavlyayuschaya funkcional'nogo pitaniya / Z. S. Zobkova [i dr.] // Molochnaya promyshlennost'. 2019. № 2. S. 44–46. https://www.elibrary.ru/yygbnj

4. Begunova, A. V. Antimikrobnye svoystva Lactobacillus v kislomolochnyh produktah / A. V. Begunova [i dr.] // Molochnaya promyshlennost'. 2020. № 6. S. 22–23. https://doi.org/10.31515/1019-8946-2020-06-22-23; https://www.elibrary.ru/ctaqtn

5. Leonova, V. A. Potencial'nye probioticheskie svoystva i profili organicheskih kislot metabolitnogo kompleksa L. helveticus / V. A. Leonova // Pischevaya promyshlennost'. 2024. № 1. S. 78–82. https://doi.org/10.52653/PPI.2024.1.1.015; https://www.elibrary.ru/oytntt

6. Rozhkova, I. V. Bifidogennye i antioksidantnye svoystva postbiotikov probioticheskih kul'tur / I. V. Rozhkova, A. V. Begunova, V. A. Leonova // Molochnaya promyshlennost'. 2022. № 12. S. 20–21. https://doi.org/10.31515/1019-8946-2022-12-20-21; https://www.elibrary.ru/rhqqcd

7. Halliwell, B. Role of Free Radicals in the Neurodegenerative Diseases. / B. Halliwell // Drugs & Aging. 2012. Vol. 18(9). P. 685–716. https://doi.org/10.2165/00002512-200118090-00004

8. Kosacheva, K. A. Model' fiziologicheskoy sistemy biosinteza vitaminov i vitaminopodobnyh veschestv v organizme zdorovogo cheloveka / K. A. Kosacheva // Mezhdunarodnyy studencheskiy nauchnyy vestnik. 2017. № 3. S. 78. https://www.elibrary.ru/ytqaff

9. Dhir, S. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. / S. Dhir [et al.] // Front. Psychiatry. 2019. Vol.10. R. 207. https://doi.org/10.3389/fpsyt.2019.00207

10. Lonsdale, D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives / D. Lonsdale // Evidence-Based Complementary and Alternative Medicine. 2006. Vol. 3(1). P. 49–59. https://doi.org/10.1093/ecam/nek009

11. Kamat, J. P. Nicotinamide (vitamin B3) as an effective antioxidant against oxidative damage in rat brain mitochondria. / J. P. Kamat, T. P. Devasagayam // Redox Rep. 1999. Vol. 4(4). R. 179– 184. https://doi.org/10.1179/135100099101534882

12. Bisello, G. Oxygen reactivity with pyridoxal 5'-phosphate enzymes: biochemical implications and functional relevance / G. Bisello [et al.] // Amino Acids. 2020. Vol. 52(8). P. 1089–1105. https://doi.org/10.1007/s00726-020-02885-6

13. Zagubnaya, O. A. Molekulyarnye mehanizmy, lezhaschie v osnove terapevticheskogo deystviya vitamina V6 / O. A. Zagubnaya, Ya. R. Narcissov // Farmaciya i farmakologiya. 2022. T. 10, № 6. S. 500–514. https://doi.org/10.19163/2307-9266-2022-10-6-500-514; https://www.elibrary.ru/yypuld

14. Cui, R. Serum total homocysteine concentrations and risk of mortality from stroke and coronary heart disease in Japanese: The JACC study / R. Cui [et al.] // Atherosclerosis. 2008. Vol. 198(2). R. 412–418. https://doi.org/10.1016/j.atherosclerosis.2007.09.029

15. Pristrom, A. M. Rol' folatov v serdechno - sosudistoy profilaktike: sovremennoe sostoyanie problemy / A. M. Pristrom // Mezhdunarodnye obzory: klinicheskaya praktika i zdorov'e. 2020. № 1. S. 62–77. https://www.elibrary.ru/waccdq

16. Byshevskiy, A. Sh. Vitamin V12 i gemostaz / A. Sh. Byshevskiy [i dr.] // Fundamental'nye issledovaniya. 2013. № 2-1. S. 221–226. https://www.elibrary.ru/puukaj

17. Nayak, B. N. Evaluation of the antioxidant properties of tryptophan and its metabolites in in vitro assay / B. N. Nayak, H. S. Buttar // Journal of Complementary and Integrative Medicine. 2016. Vol. 13(2). R. 129–136. https://doi.org/10.1515/jcim-2015-0051

18. Savina, A. A. Amperometricheskoe detektirovanie antioksidantnoy aktivnosti model'nyh i biologicheskih zhidkostey / A. A. Savina [dr.] // Vestnik Moskovskogo universiteta. 2020. T. 61, № 6. S. 429–437. https://www.elibrary.ru/gyqhre

19. Sverdlov, R. L. Vzaimodeystvie triptofana i ego proizvodnyh s kislorod- i azotcentrirovannymi radikalami / R. L. Sverdlov [i dr.] // Himiya vysokih energiy. 2015. T. 49, № 2. S. 89. https://doi.org/10.7868/S0023119315020126; https://www.elibrary.ru/ujhsrx

20. Gülçin, İ. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa / İ. Gülçin // Amino Acids. 2007. Vol. 32(3). P. 431–438. https://doi.org/10.1007/s00726-006-0379-x

21. Luo, S. Methionine in proteins defends against oxidative stress / S. Luo, R. L. Levine // FASEB Journal. 2009. Vol. 23(2). P. 464–472. https://doi.org/10.1096/fj.08-118414

22. Scherbatyh, A. A. Issledovanie antitireoidnyh i antioksidantnyh svoystv cisteina, glutationa i metionina metodami spektrofotometrii i vysokoeffektivnoy zhidkostnoy hromatografii / A. A. Scherbatyh, M. S. Chernov'yanc // Zhurnal analiticheskoy himii. 2021. T. 76, № 4. S. 313–323. https://doi.org/10.31857/S0044450221040125; https://elibrary.ru/ghvgfj

23. Glagoleva, L. E. Issledovanie aminokislotnoy aktivnosti lakto- i bifidobakteriy v processe fermentacii / L. E. Glagoleva [i dr.] // Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernyh tehnologiy. 2016. № 4(70). S. 160–165. https://doi.org/10.20914/2310-1202-2016-4-160-165; https://www.elibrary.ru/xwesmz

24. Guru, V. Riboflavin production in milk whey using probiotic bacteria – Lactobacillus acidophilus and Lactococcus lactis / V. Guru, K. Viswanathan // Indian Journal of Fundamental and Applied Life Sciences. 2013. Vol. 3(4). R.169–176.

25. LeBlanc, J. G. B-Group vitamin production by lactic acid bacteria - current knowledge and potential applications / J. G. LeBlanc [et al.] // Journal of Applied Microbiology. 2011. Vol. 111(6). P. 1297–1309. https://doi.org/10.1111/j.1365-2672.2011.05157.x

26. Adesemoye, E. T. Lactic Acid Bacteria Diversity in Fermented Foods as Potential Bio-Resources Contributing to Alleviate Malnutrition in Developing Countries: Nigeria as a Case Study / E. T. Adesemoye [et al.] // Fermentation. 2025. Vol. 11(2). 103. https://doi.org/10.3390/fermentation11020103

27. Patel, A. Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera – A promising approach / A. Patel, N. Shah, J. B. Prajapati // Croatian journal of food science and technology. 2013. Vol. 5(2). R. 85–91.

28. Walther, B. Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet / B. Walther, M. Chollet // Vitamin K2 - Vital for Health and Wellbeing. Ed. by J. O. Gordeladze. – IntechOpen, 2017. https://doi.org/10.5772/61430

29. Khromova, N. Yu . The Combination of In Vitro Assessment of Stress Tolerance Ability, Autoaggregation, and Vitamin B-Producing Ability for New Probiotic Strain Introduction / N. Yu . Khromova [et al.] // Microorganisms. 2022. Vol. 10(2). https://doi.org/10.3390/microorganisms10020470

30. Champagne, C. P. Effect of fermentation by pure and mixed cultures of Streptococcus hermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. / C. P. Champagne [et al.] // Food Microbiology. 2010. Vol. 27(7). P. 968–972. https://doi.org/10.1016/j.fm.2010.06.003

31. Teran, M. d. M. Thiamine-producing lactic acid bacteria and their potential use in the prevention of neurodegenerative diseases / M. d. M. Teran [et al.] // Applied Microbiology and Biotechnology. 2021. Vol. 105(5). P. 2097–2107. https://doi.org/10.1007/s00253-021-11148-7

Login or Create
* Forgot password?