сотрудник
Зерноград, Россия
Ростовский государственный университет путей сообщения
Зерноград, Россия
«Зеленые» технологии находят широкое применение в сельском хозяйстве и пищевой промышленности, в том числе для обеззараживания и детоксикации зерна и продуктов его переработки. С целью обеззараживания все чаще используется озонирование. Однако информация о результатах научных исследований по применению озона в зерновой отрасли является разрозненной и неполной. Цель исследования – обзор и критический анализ научных публикаций, посвященных применению озона в переработке и хранении зерна. Выполнен поиск научной литературы, по ключевым словам, за 2013–2023 гг. в научных библиографических базах eLIBRARY.RU, Google Scholar, ScienceDirect, MDPI и Springer Link, ее отбор , синтез данных и их анализ. Озонирование применяют в хранении и переработке зерна в качестве «зеленой» технологии, обеспечивающей обеззараживание и детоксикацию сырья и готовой продукции без вреда для здоровья человека и животных, а также увеличение продолжительности их хранения. В результате экспериментальных исследований было доказано, что озон обладает антимикробным, фунгицидным, инсектицидным и деградирующим микотоксины и пестициды действием. В то же время озон не снижает качества зерна и хлебопродуктов, быстро распадается и не образует токсичных соединений. Установлено, что на эффективность обработки озоном влияют многие факторы: влажность сырья, концентрация озона, длительность обработки, pH и температура среды, форма применения. Результаты исследований показывают положительное влияние озонирования на качество пшеничной муки и производимых из нее продуктов, но требуется дополнительное изучение этого эффекта для установления рациональных параметров процесса. Установлено, что озонирование зерна и продуктов его переработки является рентабельной технологией. Озонирование может найти широкое применение в качестве «зеленой» технологии, обеспечивающей обеззараживание и детоксикацию зернового сырья и готовой продукции. Озонирование обладает высоким потенциалом применения в хранении и переработке зерна.
Озон, озонирование, зерно, зерновые продукты, обеззараживание, деконтаминация, дезинсекция, качество
1. Pandiselvam R, Kothakota A. Recent applications of ozone in agri-food industry. Ozone: Science and Engineering. 2022;44(1):1–2. https://doi.org/10.1080/01919512.2022.2018897
2. Islam F, Imran A, Khalid MA, Afzaal M, Fatima M, Chauhan A, et al. Green energy process “Ozonation” and food safety: a comprehensive review. Current Research in Nutrition and Food Science Journal. 2023;11(2):488–503. https://doi.org/10.12944/CRNFSJ.11.2.03
3. Sun Y. Environmental regulation, agricultural green technology innovation, and agricultural green total factor productivity. Frontiers in Environmental Science. 2022;10:955954. https://doi.org/10.3389/fenvs.2022.955954
4. Wang Y, Qiao XJ, Wang Z. Application of ozone treatment in agriculture and food industry. A review. INMATEH-Agricultural Engineering. 2022;68(3):861–872. https://doi.org/10.35633/inmateh-68-86
5. Remondino M, Valdenassi L. Different uses of ozone: environmental and corporate sustainability. Literature review and case study. Sustainability. 2018;10(12):4783. https://doi.org/10.3390/su10124783
6. Brodowska AJ, Nowak A, Śmigielski K. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Critical Reviews in Food Science and Nutrition. 2018;58(13):2176–2201. https://doi.org/10.1080/10408398.2017.1308313
7. Burak L. Using ozonizing technology in the food industry. Sciences of Europe. 2022;98:85–100. (In Russ.). https://doi.org/10.5281/zenodo.6973824; https://www.elibrary.ru/IORPDE
8. Sivaranjani S, Prasath VA, Pandiselvam R, Kothakota A, Khaneghah AM. Recent advances in applications of ozone in the cereal industry. LWT. 2021;146:111412. https://doi.org/10.1016/j.lwt.2021.111412
9. Pandiselvam R, Thirupathi V, Mohan S, Vennila P, Uma D, Shahir S, et al. Gaseous ozone: A potent pest management strategy to control Callosobruchus maculatus (Coleoptera: Bruchidae) infesting green gram. Journal of Applied Entomology. 2019;143(4):451–459. https://doi.org/10.1111/jen.12618
10. Snyder H. Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 2019;104:333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
11. Torraco RJ. Writing integrative reviews of the literature: Methods and purposes. International Journal of Adult Vocational Education and Technology. 2016;7(3):62–70. https://doi.org/10.4018/IJAVET.2016070106
12. Pandiselvam R, Sunoj S, Manikantan MR, Kothakota A, Hebbar KB. Application and kinetics of ozone in food preservation. Ozone: Science and Engineering. 2017;39(2):115–126. https://doi.org/10.1080/01919512.2016.1268947
13. Xue W, Macleod J, Blaxland J. The use of ozone technology to control microorganism growth, enhance food safety and extend shelf life: a promising food decontamination technology. Foods. 2023;12(4):814. https://doi.org/10.3390/foods12040814
14. Afsah‐Hejri L, Hajeb P, Ehsani RJ. Application of ozone for degradation of mycotoxins in food: A review. Comprehensive Reviews in Food Science and Food Safety. 2020;19(4):1777–1808. https://doi.org/10.1111/1541-4337.12594
15. Deng LZ, Tao Y, Mujumdar AS, Pan Z, Chen C, Yang XH, et al. Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Trends in Food Science and Technology. 2020;106:104–112. https://doi.org/10.1016/j.tifs.2020.10.012
16. Бурак Л. Ч., Сапач А. Н. Озоновая технология как способ сохранения пищевых продуктов // The Scientific Heritage. 2022. Т. 86. С. 21–33. https://www.elibrary.ru/LQCSOJ
17. Припоров И. Е., Немцов А. С. Обработка семян и кормов озоном // известия оренбургского государственного аграрного университета. 2020. Т. 4. С. 186–190. https://www.elibrary.ru/DVHPOQ
18. Rangel K, Cabral FO, Lechuga GC, Carvalho JPRS, Villas-Bôas MHS, Midlej V, et al. Detrimental effect of ozone on pathogenic bacteria. Microorganisms. 2021;10(1):40. https://doi.org/10.3390/microorganisms10010040
19. Savi GD, Scussel VM. Effects of Ozone Gas Exposure on Toxigenic Fungi Species from Fusarium, Aspergillus, and Penicillium Genera. Ozone: Science and Engineering. 2014;36(2):144–152. https://doi.org/10.1080/01919512.2013.846824
20. Levinskaite L, Vaicekauskyte V. Control of fungi isolated from cereals: Variations in the susceptibility of fungal species to essential oils, ozone, and UV-C. International Journal of Food Science and Technology. 2022;57(10):6389–6398. https://doi.org/10.1111/ijfs.15944
21. Beber-Rodrigues M, Savi GD, Scussel VM. Ozone effect on fungi proliferation and genera susceptibility of treated stored dry paddy rice (Oryza sativa L.). Journal of Food Safety. 2015;35(1):59–65. https://doi.org/10.1111/jfs.12144
22. de Romero AC, de Morais JBA, Augusto PED, Calori-Domingues MA. Ozonation of agri-food products for reducing mycotoxin contamination: challenges in grains and particulates processing. Journal of Environmental Science and Health: Part B. 2021;56(9):845–851. https://doi.org/10.1080/03601234.2021.1962168
23. Pandiselvam R, Thirupathi V, Anandakumar S. Reaction kinetics of ozone gas in paddy grains. Journal of Food Process Engineering. 2015;38(6):594–600. https://doi.org/10.1111/jfpe.12189
24. Guo Y, Zhao L, Ma Q, Ji C. Novel strategies for degradation of aflatoxins in food and feed: A review. Food Research International. 2021;140:109878. https://doi.org/10.1016/j.foodres.2020.109878
25. Mir SA, Dar BN, Shah MA, Sofi SA, Hamdani AM, Oliveira CA, et al. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food and Chemical Toxicology. 2021;148: 111976. https://doi.org/10.1016/j.fct.2021.111976
26. Jalili M. A review on aflatoxins reduction in food. Iranian Journal of Health, Safety and Environment. 2016;3(1):445–459. http://ijhse.ir/index.php/IJHSE/article/view/136
27. Porto YD, Trombete FM, Freitas-Silva O, de Castro IM, Direito GM, et al. Gaseous ozonation to reduce aflatoxins levels and microbial contamination in corn grits. Microorganisms. 2019;7(8):220. https://doi.org/10.3390/microorganisms7080220
28. Trombete FM, Freitas-Silva O, Saldanha T, Venâncio AA, Fraga ME. Ozone against mycotoxins and pesticide residues in food: Current applications and perspectives. International Food Research Journal. 2016;23(6):2545–2556. https://core.ac.uk/download/pdf/76178005.pdf
29. Pankaj SK, Shi H, Keener KM. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends in Food Science and Technology. 2018;71:73–83. https://doi.org/10.1016/j.tifs.2017.11.007
30. Wang L, Luo Y, Luo X, Wang R, Li Y, Li Y, et al. Effect of deoxynivalenol detoxification by ozone treatment in wheat grains. Food Control. 2016;66:137–144. https://doi.org/10.1016/j.foodcont.2016.01.038
31. Alexandre APS, Vela-Paredes RS, Santos AS, Costa NS, Canniatti-Brazaca SG, Calori-Domingues MA, et al. Ozone treatment to reduce deoxynivalenol (DON) and zearalenone (ZEN) contamination in wheat bran and its impact on nutritional quality. Food Additives and Contaminants: Part A. 2018;35(6):1189–1199. https://doi.org/10.1080/19440049.2018.1432899
32. Zhuang K, Zhang C, Zhang W, Xu W, Tao Q, Wang G, et al. Effect of different ozone treatments on the degradation of deoxynivalenol and flour quality in Fusarium-contaminated wheat. CyTA-Journal of Food. 2020;18(1):776–784. https://doi.org/10.1080/19476337.2020.1849406
33. Krstović S, Krulj J, Jakšić S, Bočarov‐Stančić A, Jajić I. Ozone as decontaminating agent for ground corn containing deoxynivalenol, zearalenone, and ochratoxin A. Cereal Chemistry. 2021;98(1):135–143. https://doi.org/10.1002/cche.10289
34. Shuai C, Li L, Yanhui H, Jin W, Zilong L, Xiaoxue S, J et al. Study on the degradation of deoxynivalenol in corn and wheat both in the lab and barn by low concentration ozone. Journal of Food Processing and Preservation. 2021;46(10):e15833. https://doi.org/10.1111/jfpp.15833
35. Purar B, Djalovic I, Bekavac G, Grahovac N, Krstović S, Latković D, et al. Changes in Fusarium and Aspergillus mycotoxin content and fatty acid composition after the application of ozone in different maize hybrids. Foods. 2022;11(18):2877. https://doi.org/10.3390/foods11182877
36. Zhao L, Qi D, Ma Q. Novel strategies for the biodegradation and detoxification of mycotoxins in post-harvest grain. Toxins. 2023;15(7):445. https://doi.org/10.3390/toxins15070445
37. Qi L, Li Y, Luo X, Wang R, Zheng R, Wang L, et al. Detoxification of zearalenone and ochratoxin A by ozone and quality evaluation of ozonised corn. Food Additives and Contaminants: Part A. 2016;33(11):1700–1710. https://doi.org/10.1080/19440049.2016.1232863
38. Conte G, Fontanelli M, Galli F, Cotrozzi L, Pagni L, Pellegrini E. Mycotoxins in feed and food and the role of ozone in their detoxification and degradation: An update. Toxins. 2020;12(8):486. https://doi.org/10.3390/toxins12080486
39. Wang S, Wang J, Wang T, Li C, Wu Z. Effects of ozone treatment on pesticide residues in food: a review. International Journal of Food Science and Technology. 2019;54(2):301–312. https://doi.org/10.1111/ijfs.13938
40. Aidoo OF, Osei-Owusu J, Chia SY, Dofuor AK, Antwi-Agyakwa AK, Okyere H, et al. Remediation of pesticide residues using ozone: A comprehensive overview. Science of The Total Environment. 2023;894:164933. https://doi.org/10.1016/j.scitotenv.2023.164933
41. Pandiselvam R, Kaavya R, Jayanath Y, Veenuttranon K, Lueprasitsakul P, Divya V, et al. Ozone as a novel emerging technology for the dissipation of pesticide residues in foods–a review. Trends in Food Science and Technology. 2020;97:38–54. https://doi.org/10.1016/j.tifs.2019.12.017
42. Vijay Rakesh Reddy S, Sudhakar Rao DV, Sharma RR, Preethi P, Pandiselvam R. Role of ozone in post-harvest disinfection and processing of horticultural crops: A review. Ozone: Science and Engineering. 2022;44(1):127–146. https://doi.org/10.1080/01919512.2021.1994367
43. de Avila MBR, Faroni LRA, Heleno FF, de Queiroz MEL, Costa LP. Ozone as degradation agent of pesticide residues in stored rice grains. Journal of Food Science and Technology. 2017;54(12):4092–4099. https://doi.org/10.1007/s13197-017-2884-1
44. de Freitas RDS, Faroni LRDA, de Queiroz MELR, Heleno FF, Prates LHF. Degradation kinetics of pirimiphos-methyl residues in maize grains exposed to ozone gas. Journal of Stored Products Research. 2017;74:1–5. https://doi.org/10.1016/j.jspr.2017.08.008
45. Savi GD, Piacentini KC, Scussel VM. Reduction in residues of deltamethrin and fenitrothion on stored wheat grains by ozone gas. Journal of Stored Products Research. 2015;61:65–69. https://doi.org/10.1016/j.jspr.2014.12.002
46. Savi GD, Piacentini KC, Bortolotto T, Scussel VM. Degradation of bifenthrin and pirimiphos-methyl residues in stored wheat grains (Triticum aestivum L.) by ozonation. Food Chemistry. 2016;203:246–251. https://doi.org/10.1016/j.foodchem.2016.02.069
47. Kaur K, Kaur P, Kumar S, Zalpouri R, Singh M. Ozonation as a potential approach for pesticide and microbial detoxification of food grains with a focus on nutritional and functional quality. Food Reviews International. 2022;39(9)1–33. https://doi.org/10.1080/87559129.2022.2092129
48. Rehal J, Kaur J, Samandeep, Diksha A. Removal of pesticide residues in food using ozone. Food Chemistry Advances. 2023;3:100512. https://doi.org/10.1016/j.focha.2023.100512
49. Boopathy B, Rajan A, Radhakrishnan M. Ozone: an alternative fumigant in controlling the stored product insects and pests: a status report. Ozone: Science and Engineering. 2022;44(1):79–95. https://doi.org/10.1080/01919512.2021.1933899
50. Isikber AA, Athanassiou CG. The use of ozone gas for the control of insects and micro-organisms in stored products. Journal of Stored Products Research. 2015;64:139–145. https://doi.org/10.1016/j.jspr.2014.06.006
51. de Sousa IG, Oliveira J, Mexia A, Barros G, Almeida C, Brazinha C, et al. Advances in environmentally friendly techniques and circular economy approaches for insect infestation management in stored rice grains. Foods. 2023;12(3):511. https://doi.org/10.3390/foods12030511
52. Dong X, Agarwal M, Xiao Y, Ren Y, Maker G, Yu X. Ozone efficiency on two coleopteran insect pests and its effect on quality and germination of barley. Insects. 2022;13(4):318. https://doi.org/10.3390/insects13040318
53. Baskakov IV. Grain ozonous treatment and its influence on stored-grain pests and insects. Vestnik of Voronezh State Agrarian University. 2019;12(3):41–46. (In Russ.). https://doi.org/10.17238/issn2071-2243.2019.3.41; https://www.elibrary.ru/JVSZIP
54. Baskakov IV, Orobinsky VI, Vasilenko VV, Gievsky AM. Ozone disinfection of grain from granary weevil and confused flour beetle. Siberian Herald of Agricultural Science. 2022;52(5):42–48. (In Russ.). https://doi.org/10.26898/0370-8799-2022-5-5; https://www.elibrary.ru/TMCLGR
55. Ingegno BL, Tavella L. Ozone gas treatment against three main pests of stored products by combination of different application parameters. Journal of Stored Products Research. 2022;95:101902. https://doi.org/10.1016/j.jspr.2021.101902
56. Srivastava S, Mishra G, Mishra HN. Vulnerability of different life stages of Sitophilus oryzae insects in stored rice grain to ozone treatment and its effect on physico‐chemical properties in rice grain. Food Frontiers. 2021;2(4):494–507. https://doi.org/10.1002/fft2.89
57. Abdelfattah NA, Marie AM, Fawki S. The Effect of Ozone on Rhyzopertha dominica, Tribolium Castaneum, and Technological Properties of Wheat Flour. Ozone: Science and Engineering. 2023;45(9)1–15. https://doi.org/10.1080/01919512.2023.2171363
58. Hansen LS, Hansen P, Jensen KMV. Effect of gaseous ozone for control of stored product pests at low and high temperature. Journal of Stored Products Research. 2013;54:59–63. https://doi.org/10.1016/j.jspr.2013.05.003
59. Ramos GYR, Silva GN, Silva YNM, Silva YDM, Marques IS, da Silva GL, et al. Ozonation of cowpea grains: alternative for the control of Callosobruchus maculatus and maintenance of grain quality. Agriculture. 2023;13(5):1052. https://doi.org/10.3390/agriculture13051052
60. Baskakov IV, Orobinsky VI, Gievsky AM, Gulevsky VA, Chernyshov AV. Ozone pest control of grain. Conference Series: Earth and Environmental Science. 2023;1138(1):012026. https://doi.org/10.1088/1755-1315/1138/1/012026
61. Sunisha K. Ozone fumigation in stored paddy: Changes in moisture content upon storage. Journal of Entomology and Zoology Studies. 2019;7(3):1137–1140. https://www.entomoljournal.com/archives/2019/vol7issue3/PartS/7-2-83-452.pdf
62. Kiryukhina AN, Grigoreva RZ, Kozhevnikova AYu. Bread Production and Bakery Products in Russia: Current State and Prospects. Food Processing: Techniques and Technology. 2019;49(2):330–337. (In Russ.). https://doi.org/10.21603/2074-9414-2019-2-330-337; https://www.elibrary.ru/XDTXYZ
63. Sharma R, Singh A, Sharma S. Influence of ozonation on cereal flour functionality and dough characteristics: a review. Ozone: Science and Engineering. 2021; 43(6):613–636. https://doi.org/10.1080/01919512.2021.1898337
64. Li MM, Guan EQ, Bian K. Effect of ozone treatment on deoxynivalenol and quality evaluation of ozonised wheat. Food Additives and Contaminants: Part A. 2015;32(4):544–553. https://doi.org/10.1080/19440049.2014.976596
65. Dubois M, Coste C, Despres AG, Efstathiou T, Nio C, Dumont E, et al. Safety of Oxygreen®, an ozone treatment on wheat grains. Part 2. Is there a substantial equivalence between Oxygreen-treated wheat grains and untreated wheat grains? Food Additives and Contaminants. 2006;23:1–15. https://doi.org/10.1080/02652030500316728
66. Ding W, Wang Y, Zhang W, Shi YC, Wang D. Effect of ozone treatment on physicochemical properties of waxy rice flour and waxy rice starch. International Journal of Food Science and Technology. 2015;50(3):744–749. https://doi.org/10.1111/ijfs.12691
67. Li M, Zhu KX, Wang BW, Guo XN, Peng W, Zhou HM. Evaluation of the quality characteristics of wheat flour and shelf-life of fresh noodles as affected by ozone treatment. Food Chemistry. 2012;135(4):2163–2169. https://doi.org/10.1016/j.foodchem.2012.06.103
68. Valieva AI, Akulov AN, Rumyantseva NI. Phenolic compounds in purple whole-wheat flour and bread: Comparative analysis. Foods and Raw Materials. 2024;12(2):334–347. https://doi.org/10.21603/2308-4057-2024-2-611; https://www.elibrary.ru/OJJZLQ
69. Zhu F. Effect of ozone treatment on the quality of grain products. Food Chemistry. 2018;264:358–366. https://doi.org/10.1016/j.foodchem.2018.05.047
70. Baskakov IV, Orobinsky VI, Gievsky AM, Chernyshov AV, Chernova OV. The influence of the ozonation process on the quality indicators of winter wheat grain. Storage and Processing of Farm Products. 2023;(1):177–189. (In Russ.). https://doi.org/10.36107/spfp.2023.396; https://www.elibrary.ru/FTYMLS
71. Mei J, Liu G, Huang X, Ding W. Effects of ozone treatment on medium-hard wheat (Triticum aestivum L.) flour quality and performance in steamed bread making. CyTA-Journal of Food. 2016;14(3):449–456. https://doi.org/10.1080/19476337.2015.1133714
72. Lee MJ, Kim MJ, Kwak HS, Lim ST, Kim SS. Effects of ozone treatment on physicochemical properties of Korean wheat flour. Food Science and Biotechnology. 2017;26(2):435–440. https://doi.org/10.1007/s10068-017-0059-5; https://www.elibrary.ru/FYPWQQ
73. Obadi M, Zhu KX., Peng W, Sulieman AA, Mohammed K, Zhou HM. Effects of ozone treatment on the physicochemical and functional properties of whole-grain flour. Journal of Cereal Science. 2018;81:127–132. https://doi.org/10.1016/j.jcs.2018.04.008
74. Li M, Peng J, Zhu KX, Guo XN, Zhang M, Peng W, et al. Delineating the microbial and physical-chemical changes during storage of ozone-treated wheat flour. Innovative Food Science and Emerging Technologies. 2013;20:223–229. https://doi.org/10.1016/j.ifset.2013.06.004
75. Sandhu HP, Manthey FA, Simsek S. Quality of bread made from ozonated wheat (Triticum aestivum L.) flour. Journal of the Science of Food and Agriculture. 2011;91(9):1576–1584. https://doi.org/10.1002/jsfa.4350
76. Chittrakorn S, Earls D, MacRitchie F. Ozonation as an alternative to chlorination for soft wheat flours. Journal of Cereal Science. 2014;60(1):217–221. https://doi.org/10.1016/j.jcs.2014.02.013
77. Glowacz M, Colgan R, Rees D. The use of ozone to extend the shelf-life and maintain quality of fresh produce. Journal of the Science of Food and Agriculture. 2014;95(4):662–671. https://doi.org/10.1002/jsfa.6776
78. Tiwari BK, Brennan CS, Curran T, Gallagher E, Cullen PJ, O'Donnell CP. Application of ozone in grain processing. Journal of Cereal Science. 2010;51(3):248–255. https://doi.org/10.1016/j.jcs.2010.01.007