Ulyanovsk, Russian Federation
Ulyanovsk, Russian Federation
Ulyanovsk, Russian Federation
Ulyanovsk, Russian Federation
Ulyanovsk, Russian Federation
Ulyanovsk, Russian Federation
The paper introduces optimal conditions for chymosin protein induction. The research featured the correlation between the cell mass gain of transformed P. pastoris/pPICZ(alpha)B/proCYM_camel_pp_IDT and the composition of nutrient media with different carbon sources and zeocin resistance producer strains. P. pastoris GS115/his4 was transformed to obtain P. pastoris/pPICZ(alpha)B/proCYM_camel_pp_IDT as a strain producer. The cell mass growth rate correlated with the zeocin concentrations in the YPD nutrient medium without glycerol and biotin and the YPD nutrient medium fortified with 0.0000% biotin and 1% glycerol. The biomass density increased faster when cultured on the fortified medium, regardless of zeocin concentration, especially during cultivation day 1. The cell mass growth on solid and liquid selective media was multidirectional. The two experimental samples on solid selective media with 200 μg/ml zeocin started growing on cultivation day 3 if the YPD medium was not fortified. The samples on fortified medium, on the contrary, showed no growth on day 3. The optical density of the cell mass grown on liquid selective medium demonstrated a particular pattern: the rate of biomass growth in the fortified medium samples decreased gradually whereas the unfortified medium samples demonstrated signs of growth, which intensified on cultivation day 2. To increase the cell density of P. pastoris strain GS115/his4, a preliminary application of 0.5 % methanol is recommended as a carbon source to activate the MUT metabolic pathway, i.e., methanol utilization. Adding the alternative oxidase enzyme is also recommended since strain GS115/his4 belongs to the MUT+ phenotype with a high growth rate and productivity, hence the need for additional methanol. The obtained data may help to optimize the commercial yield of P. pastoris as a producer of recombinant protein.
genetic construct, recombinant chymosin, Camelus dromedarius, yeast Pichia. pastoris, vector, plasmid, zeocin, methanol, E. coli
1. Malik, A. A review on Pichia pastoris: A successful tool for expression of recombinant proteins / A. Malik [et al.] // The Pharma Innovation Journal. 2021. Vol. 10. № 11. P. 550–556.
2. Akishev, Z. Obtaining of recombinant camel chymosin and testing its milk-clotting activity on cow’s, goat’s, ewes’, camel’s and mare’s milk / Z. Akishev [et al.] // Biology. 2022. Vol. 11. № 11. 1545. https://doi.org/10.3390/biology11111545
3. Antonova, E. I. Geneticheskie konstrukcii kak istochnik polucheniya rekombinantnogo himozina / E. I. Antonova, A. N. Abbyazova, N. V. Firsova [i dr.] // Fundamental'nye i prikladnye issledovaniya po prioritetnym napravleniyam bioekologii i biotehnologii : Sbornik materialov VII Vserossiyskoy nauchno-prakticheskoy konferencii. Cheboksary: ID «Sreda», 2024. S. 49–55. https://doi.org/10.31483/r-112097; https://www.elibrary.ru/bboeyl
4. Obst, U. A modular toolkit for generating Pichia pastoris secretion libraries / U. Obst, T. K. Lu, V. Sieber // ACS Synthetic Biology. 2017. Vol. 6. № 6. P. 1016–1025. https://doi.org/10.1021/acssynbio.6b00337
5. Akishev, Z. Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris / Z. Akishev [et al.] // Heliyon. 2021. Vol. 7. № 5. e07137. https://doi.org/10.1016/j.heliyon.2021.e07137
6. Wang, N. Expression and characterization of camel chymosin in Pichia pastoris / N. Wang, [et al.] // Protein Expression and Purification. 2015. Vol. 111. P. 75–81. https://doi.org/10.1016/j.pep.2015.03.012
7. Murashkin, D. E. Analiz nekotoryh biohimicheskih svoystv rekombinantnogo himozina sibirskoy kosuli (Capreolus pygargus), poluchennogo v kul'ture kletok mlekopitayuschih (CHO-K1) / D. E. Murashkin, S. V. Belen'kaya, A. A. Bondar' [i dr.] // Biohimiya. 2023. T. 88. №. 9. S. 1556–1569. https://doi.org/10.31857/ S0320972523090087; https://www.elibrary.ru/wwnnwk
8. Belen'kaya, S. V. Razrabotka producenta rekombinantnogo himozina marala na osnove drozhzhey Kluyveromyces lactis / S. V. Belen'kaya, V. V. El'chaninov, D. N. Scherbakov // Biotehnologiya. 2021. T. 37. № 5. S. 20–27. https://doi.org/10.21519/0234-2758-2021-37-5-20-27; https://www.elibrary.ru/qzyxec
9. Patra, P. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts / P. Patra [et al.] // Biotechnology Advances. 2021. № 47. 107695. https://doi.org/10.1016/j.biotechadv.2021.107695
10. Küberl, A. High-quality genome sequence of Pichia pastoris CBS7435 / A. Küberl [et al.] // Journal of Biotechnology. 2011. Vol. 154. № 4. P. 312–320. https://doi.org/10.1016/j.jbiotec.2011.04.014
11. Cereghino, G. P. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris / G. P. Cereghino [et al.] // Current Opinion in Biotechnology. 2002. № 13. P. 329–332. https://doi.org/10.1016/s0958-1669(02)00330-0
12. Inan, M. Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris / M. Inan, M. M. Meagher // Journal of Bioscience and Bioengineering. 2001. Vol. 92. № 6. P. 585–589. https://doi.org/10.1263/jbb.92.585
13. Sunga, A. J. Posttransformational vector amplification in the yeast Pichia pastoris / A. J. Sunga, I. Tolstorukov, J. M. Cregg // FEMS Yeast Research. 2008. Vol. 8. № 6. P. 870–876. https://doi.org/10.1111/j.1567-1364.2008.00410.x
14. Saitua, F. Dynamic genome-scale metabolic modeling of the yeast Pichia pastoris / F. Saitua [et al.] // BMC systems biology. 2017. Vol. 11. 27. https://doi.org/10.1186/s12918-017-0408-2
15. Jungo, C. Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: A quantitative study based on concentration gradients in transient continuous cultures / C. Jungo, I. Marison, U. Von Stockar // Journal of Biotechnology. 2007. Vol. 128. № 4. P. 824–837. https://doi.org/10.1016/j.jbiotec.2006.12.024
16. de Lima, P. B. Novel homologous lactate transporter improves l-lactic acid production from glycerol in recombinant strains of Pichia pastoris / P. B. A. de Lima [et al.] // Microbial Cell Factories. 2016. № 15. 158. https://doi.org/10.1186/s12934-016-0557-9