Kemerovo, Kemerovo, Russian Federation
Moscow, Russian Federation
Kemerovo, Russian Federation
Kemerovo, Kemerovo, Russian Federation
Kemerovo, Russian Federation
Kemerovo, Russian Federation
Kemerovo, Russian Federation
Flavonoids are plant polyphenols that exhibit biological activity with antibacterial, antiviral, antioxidant, anti-inflammatory, antimutagenic, and anticarcinogenic effects. The medicinal plants of Kuzbass have high contents of flavonoids and other polyphenolic compounds. Therefore, they can be used in medicinal preparations to prevent or treat serious diseases. We studied the following plants collected in Kuzbass: common thyme (Thymus vulgaris Linn., leaves and stems), woolly burdock (Arctium tomentosum Mill., roots), alfalfa (Medicago sativa L., leaves and stems), common lungwort (Pulmonaria officinalis L., leaves and stems), common yarrow (Achillea millefolium L., leaves and stems), red clover (Trifolium pratense L., leaves and stems), common ginseng (Panax ginseng, roots), sweetvetch (Hedysarum neglectum Ledeb., roots), and cow parsnip (Heracleum sibiricum L., inflorescences, leaves, and stems). To extract flavonoids, we used ethanol at concentrations of 40, 55, 60, 70, and 75%. Spectrophotometry was used to determine total flavonoids, while high-performance liquid chromatography was employed to study the qualitative and quantitative composition of the extracts. The highest yield of flavonoids was found in H. sibiricum leaves (at all concentrations except 70%), followed by the 55% and 70% ethanol extracts of T. vulgaris leaves and stems, as well as the 75% ethanol extract of A. millefolium leaves and stems. Thus, these plants have the greatest potential in being used in medicines. High-performance liquid chromatography showed the highest contents of polyphenolic compounds in the samples of P. officinalis, A. millefolium, T. vulgaris, and T. pratense. Our results can be used in further research to produce new medicinal preparations based on the medicinal plants of Kuzbass.
Flavonoids, medicinal plants, spectrophotometry, chromatography, HPLC, extraction, plant extracts
1. Donadio G, Mensitieri F, Santoro V, Parisi V, Bellone ML, De Tommasi N, et al. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics. 2021;13(5):660. https://doi.org/10.3390/pharmaceutics13050660
2. Roy A, Datta S, Bhatia K, Bhumika, Jha P, Prasad R. Role of plant derived bioactive compounds against cancer. South African Journal of Botany. 2022;149:1017–1028. https://doi.org/10.1016/j.sajb.2021.10.015
3. Tabakaev AV, Tabakaeva OV, Prikhodko YuV. Functional instant beverages. Foods and Raw Materials. 2023;11(2):187–196. https://doi.org/10.21603/2308-4057-2023-2-565; https://elibrary.ru/MMKNMH
4. Kozlova OV, Velichkovich NS, Faskhutdinova ER, Neverova OA, Petrov AN. Methods for extracting immuneresponse modulating agents of plant origin. Food Processing: Techniques and Technology. 2023;53(4):680–688. (In Russ.). https://doi.org/10.21603/2074-9414-2023-4-2468; https://elibrary.ru/EWLVJD
5. Babich O, Prosekov A, Zaushintsena A, Sukhikh A, Dyshlyuk L, Ivanova S. Identification and quantification of phenolic compounds of Western Siberia Astragalus danicus in different regions. Heliyon. 2019;5(8):e02245. https://doi.org/10.1016/j.heliyon.2019.e02245
6. Perez-Vizcaino F, Fraga C. Research trends in flavonoids and health. Archives of Biochemistry and Biophysics. 2018;646:107–112. https://doi.org/10.1016/j.abb.2018.03.022
7. Kaur S, Roy A. A review on the nutritional aspects of wild edible plants. Current Traditional Medicine. 2021;7(4):552–563. https://doi.org/10.2174/2215083806999201123201150
8. Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science. 2012;196:67–76. https://doi.org/10.1016/j.plantsci.2012.07.014
9. Khachatoorian R, Arumugaswami V, Raychaudhuri S, Yeh GK, Maloney EM, Wang J, et al. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. Virology. 2012;433(2):346–355. https://doi.org/10.1016/j.virol.2012.08.029
10. Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents. 2005;26(5):343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
11. Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, et al. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Research International. 2022;2022(1):5445291. https://doi.org/10.1155/2022/5445291
12. Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019;9(9):430. https://doi.org/10.3390/biom9090430
13. Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chemistry. 2019;299:125124. https://doi.org/10.1016/j.foodchem.2019.125124
14. Belashova OV, Kozlova OV, Velichkovich NS, Fokina AD, Yustratov VP, Petrov AN. A phytochemical study of the clover growing in Kuzbass. Foods and Raw Materials. 2024;12(1):194–206. https://doi.org/10.21603/2308-4057-2024-1-599; https://elibrary.ru/QZBVUI
15. Faskhutdinova ER, Sukhikh AS, Le VM, Minina VI, Khelef MEA, Loseva AI. Effects of bioactive substances isolated from Siberian medicinal plants on the lifespan of Caenorhabditis elegans. Foods and Raw Materials. 2022;10(2):340–352. https://doi.org/10.21603/2308-4057-2022-2-544; https://elibrary.ru/ZVCUUW
16. Patil SM, Ramu R, Shirahatti PS, Shivamallu C, Amachawadic RG. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon. 2021;7(5):e07054. https://doi.org/10.1016/j.heliyon.2021.e07054
17. Panah KG, Hesaraki S, Farahpour MR. Histopathological evaluation of Thymus vulgaris on wound healing. Indian Journal of Fundamental and Applied Life Sciences. 2014;4(S4):3538–3544.
18. da Rosa CG, de Melo APZ, Sganzerla WG, Machado MH, Nunes MR, Maciel MVOB, et al. Application in situ of zein nanocapsules loaded with Origanum vulgare Linneus and Thymus vulgaris as a preservative in bread. Food Hydrocolloids. 2020;99:105339. https://doi.org/10.1016/j.foodhyd.2019.105339
19. El-Nekeety AA, Mohamed SR, Hathout AS, Hassan NS, Aly SE, Abdel-Wahhab MA. Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon. 2011;57(7–8):984–991. https://doi.org/10.1016/j.toxicon.2011.03.021
20. Soliman MM, Aldhahrani A, Metwally MMM. Hepatoprotective effect of Thymus vulgaris extract on sodium nitriteinduced changes in oxidative stress, antioxidant and inflammatory marker expression. Scientific Reports. 2021;11:5747. https://doi.org/10.1038/s41598-021-85264-9
21. Isakakroudi N, Talebi A, Allymehr M, Tavassoli M. Effects of essential oils combination on sporulation of Turkey (Meleagris gallopavo) Eimeria oocysts. Archives of Razi Institute. 2018;73(2):113–120. https://doi.org/10.22092/ari.2017.109255.1102
22. Skowrońska W, Granica S, Dziedzic M, Kurkowiak J, Ziaja M, Bazylko A. Arctium lappa and Arctium tomentosum, Sources of Arctii radix: Comparison of anti-lipoxygenase and antioxidant activity as well as the chemical composition of extracts from aerial parts and from roots. Plants. 2021;10(1):78. https://doi.org/10.3390/plants10010078
23. Aitynova AE, Ibragimova NA, Shalakhmetova TM, Gapurkhaeva TE, Krasnoshtanov AV, Kenesheva ST. Antimicrobial effect of extract from root of Arctium tomentosum Mill. (woolly burdock) against several reference strains. International Journal of Biology and Chemistry. 2022;15(2):10–17. https://doi.org/10.26577/ijbch.2022.v15.i2.02
24. Ydyrys A. An overview of medical uses and chemical composition of Arctium tomentosum mill. Engineered Science. 2023;26:984. https://doi.org/10.30919/es984
25. Strawa J, Wajs-Bonikowska A, Jakimiuk K, Waluk M, Poslednik M, Nazaruk J, et al. Phytochemical examination of woolly burdock Arctium tomentosum leaves and flower heads. Chemistry of Natural Compounds. 2020;56:345–347. https://doi.org/10.1007/s10600-020-03027-w
26. Horvat D, Viljevac Vuletić M, Andrić L, Baličević R, Kovačević Babić M, Tucak M. Characterization of forage quality, phenolic profiles, and antioxidant activity in alfalfa (Medicago sativa L.). Plants. 2022;11(20):2735. https://doi.org/10.3390/plants11202735
27. Zagórska-Dziok M, Ziemlewska A, Nizioł-Łukaszewska Z, Bujak T. Antioxidant activity and cytotoxicity of Medicago sativa L. seeds and herb extract on skin cells. BioResearch Open Access. 2020;9(1):229–242. https://doi.org/10.1089/biores.2020.0015
28. Raeeszadeh M, Beheshtipour J, Jamali R, Akbari A. The antioxidant properties of alfalfa (Medicago sativa L.) and its biochemical, antioxidant, anti‐inflammatory, and pathological effects on nicotine‐induced oxidative stress in the rat liver. Oxidative Medicine and Cellular Longevity. 2022;2022(1):2691577. https://doi.org/10.1155/2022/2691577
29. Gatouillat G, Alabdul Magid A, Bertin E, Okiemy-Akeli M-G, Morjani H, Lavaud C, et al. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells. Nutrition and Cancer. 2014;66(3):483–491. https://doi.org/10.1080/01635581.2014.884228
30. Brys R, Jacquemyn H, Hermy M, Beeckman T. Pollen deposition rates and the functioning of distyly in the perennial Pulmonaria officinalis (Boraginaceae). Plant Systematics and Evolution. 2008;273:1–12. https://doi.org/10.1007/s00606-008-0003-5
31. Chauhan S, Jaiswal V, Cho Y-I, Lee H-J. Biological activities and phytochemicals of lungworts (genus Pulmonaria) focusing on Pulmonaria officinalis. Applied Sciences. 2022;12(13):6678. https://doi.org/10.3390/app12136678
32. Hawrył MA, Waksmundzka-Hajnos M. Micro 2D-TLC of selected plant extracts in screening of their composition and antioxidative properties. Chromatographia 2013;76:1347–1352. https://doi.org/10.1007/s10337-013-2490-y
33. Farhadi N, Babaei K, Farsarae S, Moghaddam M, Ghasemi Pirbalouti A. Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea millefolium at different growth stages. Industrial Crops and Products. 2020;152:112570. https://doi.org/10.1016/j.indcrop.2020.112570
34. Judzentiene A. Atypical chemical profiles of wild yarrow (Achillea millefolium L.) essential oils. Records of Natural Products. 2016;10(2):262–268.
35. Chavez-Silva F, Ceron-Romero L, Arias-Duran L, Navarrete-Vázquez G, Almanza-Pérez J, Román-Ramos R, et al. Antidiabetic effect of Achillea millefollium through multitarget interactions: α-glucosidases inhibition, insulin sensitization and insulin secretagogue activities. Journal of Ethnopharmacology. 2018;212:1–7. https://doi.org/10.1016/j.jep.2017.10.005
36. Bimbiraite K, Ragazinskiene O, Maruska A, Kornyšova O. Comparison of the chemical composition of four yarrow (Achillea millefolium L.) morphotypes. Biologija. 2008;54(3):208–212. https://doi.org/10.2478/v10054-008-0046-0
37. Akbaribazm M, Khazaei MR, Khazaei M. Phytochemicals and antioxidant activity of alcoholic/hydroalcoholic extract of Trifolium pratense. Chinese Herbal Medicines. 2020;12(3):326–335. https://doi.org/10.1016/j.chmed.2020.02.002
38. Khazaei M, Pazhouhi M. Protective effect of hydroalcoholic extracts of Trifolium pratense L. on pancreatic β cell line (RIN-5F) against cytotoxicty of streptozotocin. Research in Pharmaceutical Sciences. 2018;13(4):324–331. https://doi.org/10.4103/1735-5362.235159
39. Oza MJ, Kulkarni YA. Trifolium pratense (red clover) improve SIRT1 expression and glycogen content in high fat diet‐streptozotocin induced type 2 diabetes in rats. Chemistry and Biodiversity. 2020;17:e2000019. https://doi.org/10.1002/cbdv.202000019
40. Akbaribazm M, Khazaei F, Naseri L, Pazhouhi M, Zamanian M, Khazaei M. Pharmacological and therapeutic properties of the red clover (Trifolium pratense L.): An overview of the new findings. Journal of Traditional Chinese Medicine. 2021;41(4):642–649. https://doi.org/10.19852/j.cnki.jtcm.20210604.001
41. Al‐Shami AS, Essawy AE, Elkader H-TA. Molecular mechanisms underlying the potential neuroprotective effects of Trifolium pratense and its phytoestrogen‐isoflavones in neurodegenerative disorders. Phytotherapy Research. 2023;37(6):2693–2737. https://doi.org/10.1002/ptr.7870
42. Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacological Research. 2020;161:105263. https://doi.org/10.1016/j.phrs.2020.105263
43. Kim J-H. Cardiovascular diseases and Panax ginseng: A review on molecular mechanisms and medical applications. Journal of Ginseng Research. 2012;36(1):16–26. https://doi.org/10.5142/jgr.2012.36.1.16
44. Kim KH, Lee D, Lee HL, Kim C-E, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. Journal of Ginseng Research. 2018;42(3):239–247. https://doi.org/10.1016/j.jgr.2017.03.011
45. Kim S, Kim N, Jeong JY, Lee S, Kim W, Ko S-G, et al. Anti-cancer effect of Panax ginseng and its metabolites: From traditional medicine to modern drug discovery. Processes. 2021;9(8):1344. https://doi.org/10.3390/pr9081344
46. Naseri K, Saadati S, Sadeghi A, Asbaghi O, Ghaemi F, Zafarani F, et al. The efficacy of ginseng (Panax) on human prediabetes and type 2 diabetes mellitus: A systematic review and meta-analysis. Nutrients. 2022;14(12):2401. https://doi.org/10.3390/nu14122401
47. Truong V-L, Jeong W-S. Red ginseng (Panax ginseng Meyer) oil: A comprehensive review of extraction technologies, chemical composition, health benefits, molecular mechanisms, and safety. Journal of Ginseng Research. 2022;46(2):214–224. https://doi.org/10.1016/j.jgr.2021.12.006
48. Vesnina A, Milentyeva I, Minina V, Kozlova O, Asyakina L. Evaluation of the in vivo anti-atherosclerotic activity of quercetin isolated from the hairy roots of Hedysarum neglectum Ledeb. Life. 2023;13(8):1706. https://doi.org/10.3390/life13081706
49. Starostina NP, Durnova NA. Perspectives for the use of plants genus Hedysarun in medicine and pharmacy. Science Diary. 2021;(4):1–11. (In Russ.). https://doi.org/10.51691/2541-8327_2021_4_4; https://elibrary.ru/ILGKJW
50. Dyshlyuk LS, Fotina NV, Milentyeva IS, Ivanova SA, Izgarysheva NV, Golubtsova YuV. Antimicrobial and antioxidant activity of Panax ginseng and Hedysarum neglectum root crop extracts. Brazilian Journal of Biology. 2022;84:e256944. https://doi.org/10.1590/1519-6984.256944
51. Popovich SO, Grinets LV. Usage Siberian hogweed. Youth and Science. 2023;5:17. (In Russ.). https://elibrary.ru/MDCVAY
52. Tkachenko KG. Heracleum L. genus – economic plants. Bulletin of Udmurt University. Series Biology. Earth Sciences. 2014;(4):27–33. (In Russ.). https://elibrary.ru/THPRJH
53. Kolesnikova I, Saparklycheva SE. Spicy wild plants. Youth and Science. 2018;(2):13. (In Russ.). https://elibrary.ru/UUQWYI
54. The State Pharmacopeia of the Russian Federation. 13th edition [Internet]. [cited 2023 Mar 20]. Available from: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-13/?ysclid=lx9t2qy4r5104949779
55. De Luna SLR, Ramírez-Garza RE, Saldívar SOS. Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. The Scientific World Journal. 2020;2020:6792069. https://doi.org/10.1155%2F2020%2F6792069; https://doi.org/10.1155/2020/6792069
56. Adamtsevich NYu, Zakrzheuskaya YeI, Feskova EV, Leontiev VN, Titok VV. Development and validation of the method for the quantification of flavonoids in leaves of Lithospermum officinale (Boraginaceae). Rastitelnye Resursy. 2022;58(1):100–108. (In Russ.). https://www.elibrary.ru/UIEUBR
57. Malankina EL, Tkacheva EN, Kozlovskaya LN. Medicinal plants of the Lamiaceae family as flavonoids sources. Problems of Biological, Medical and Pharmaceutical Chemistry. 2018;21(1):30–35. (In Russ.). https://doi.org/10.29296/25877313-2018-01-06; https://www.elibrary.ru/YPUTZH
58. Tikhonov BB, Sidorov AI, Sulman EM, Ozhimkova EV. Glycans and flavonoids from raw materials as functional food components. Herald of Tver State University. Series: Biology and Ecology. 2011;(24):68–75. (In Russ.). https://www.elibrary.ru/OPILUV
59. Shkol’nikova MN, Averyanova EV, Tsapalova IE. Hedysarum lost – perspective raw material for manufacture of nonalcoholic balsams. Beer and Beverages. 2006;(2):66–67. (In Russ.). https://www.elibrary.ru/ORNARX
60. Konovalenko IC, Polovko NP, Bevz NYu. Development of quality control methods of infusion from gynecological medicinal plant collection. Norwegian Journal of Development of the International Science. 2019;(10–2):43–48. (In Russ.). https://www.elibrary.ru/OYFJBN
61. Kasatkina NI, Nelyubina ZhS. Biochemical characteristics of Trifolium pratense L. varieties in the conditions of the Udmurt Republic. Chemistry of Plant Raw Materials. 2022;(1):261–268. (In Russ.). https://doi.org/10.14258/jcprm.2022019350; https://www.elibrary.ru/JDIWCU
62. Karimi E, Oskoueian E, Oskoueian A, Omidvar V, Hendra R, Nazeran H. Insight into the functional and medicinal properties of Medicago sativa (Alfalfa) leaves extract. Journal of Medicinal Plants Research. 2013;7(7):290–297.
63. Dushlyuk LS, Drozdova MYu, Loseva AI. Study on safety profile in extracts of Pulmonaria officinalis callus cultures and their phytochemical composition for the presence bioactive substances with the potential geroprotective properties. Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(2):260–271. (In Russ.). https://doi.org/10.21285/2227-2925-2021-11-2-260-271; https://www.elibrary.ru/HIEEZU
64. Lin Z, Xie R, Zhong C, Huang J, Shi P, Yao H. Recent progress (2015–2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb1, a main active ingredient in Panax ginseng Meyer. Journal of Ginseng Research. 2022;46(1):39–53. https://doi.org/10.1016/j.jgr.2021.07.008
65. Dauqan EMA, Abdullah A. Medicinal and functional values of thyme (Thymus vulgaris L.) herb. Journal of Applied Biology and Biotechnology. 2017;5(2):017–022. https://doi.org/10.7324/JABB.2017.50203
66. Mărculescu A, Vlase L, Hanganu D, Drăgulescu C, Antonie I, Neli-Kinga O. Polyphenols analyses from Thymus species. Proceedings of the Romanian Academy. Series B: Chemistry, Life Sciences, and Geosciences. 2007;3:117–121.
67. Asyakina LK, Fotina NV, Izgarysheva NV, Slavyanskiy AA, Neverova OA. Geroprotective potential of in vitro bioactive compounds isolated from yarrow (Achilleae millefolii L.) cell cultures. Foods and Raw Materials. 2021;9(1):126–134. https://doi.org/10.21603/2308-4057-2021-1-126-134
68. Babich OO, Samsuev IG, Tcibulnikova AV, Zemlyakova ES, Popov AD, Ivanova SA, et al. Properties of plant extracts and component composition: column chromatography and IR spectroscopy. Foods and Raw Materials. 2024;12(2):373–387. https://doi.org/10.21603/2308-4057-2024-2-615
69. Tundis R, Marrelli M, Conforti F, Tenuta MC, Bonesi M, Menichini F, et al. Trifolium pratense and T. repens (Leguminosae): Edible flower extracts as functional ingredients. Foods. 2015;4(3):338–348. https://doi.org/10.3390/foods4030338




