Uglich, Russian Federation
Uglich, Russian Federation
Uglich, Russian Federation
Uglich, Russian Federation
The air environment is an integral part of the technological process at food industry enterprises, where compliance with strict sanitary and hygienic standards is a mandatory condition. Microbial contamination reduces the quality and shelf life of the finished product. Moreover, it can be a potential threat to consumers’ health. In this regard, microbiological control and regular disinfection are the most important elements of the production process. Aerosol sprays reduce microbial load in the air. For instance, chlorine dioxide (ClO₂) sprays are known for their wide range of antimicrobial effects at industrial premises. This study assessed the bactericidal and sporicidal action of chlorine dioxide against such opportunistic, harmful, and sanitary-indicative microflora as Staphylococcus aureus, Bacillus subtilis, and Escherichia coli. The research tested two concentrations of chlorine dioxide: 0.25% and 0.50%. At 0.50%, the spray was able to eliminate 99.0% of bacterial load, which corresponded to the regulatory requirements for the air environment in food production facilities. Chlorine dioxide confirmed its high efficiency in combating microbial contamination, including resistant spore forming forms of bacteria. It demonstrated good prospects as air disinfectant at dairy processing enterprises: chlorine dioxide sprays minimized the risks of microbial contamination, ensuring compliance with the strict quality and safety standards for dairy products.
air, disinfection, disinfectant, chlorine dioxide, ClO₂, bactericidal efficiency, sporicidal efficiency
1. Machado, S. G. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products / S. G. Machado [et al.] // Frontiers in microbiology. 2017. Vol. 8. P. 302. https://doi.org/10.3389/fmicb.2017.00302
2. Ahmedsham, M. Review on milk and milk product safety, quality assurance and control / M. Ahmedsham, N. Amza, M. Tamiru // International Journal of Livestock Production. 2018. Vol. 9(4). P. 67–78. https://doi.org/10.5897/IJLP2017.0403
3. Fusco, V. Microbial quality and safety of milk and milk products in the 21st century / V. Fusco [et al.] // Comprehensive Reviews in Food Science and Food Safety. 2020. Vol. 19(4). P. 2013–2049. https://doi.org/10.1111/1541-4337.12568
4. Pal, M. Bacterial contamination of dairy products / M. Pal [et al.] // Beverage and food world. 2016. Vol. 43(9). P. 40–43.
5. El-Sayed, A. S. Detection of potential microbial contaminants and their toxins in fermented dairy products: A comprehensive review / A. S. El-Sayed, H. Ibrahim, M. A. Farag // Food Analytical Methods. 2022. Vol. 15(7). P. 1880–1898. https://doi.org/10.1007/s12161-022-02253-y
6. Masotti, F. Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air / F. Masotti [et al.] // Trends in Food Science & Technology. 2019. Vol. 90. P. 147–156. https://doi.org/10.1016/j.tifs.2019.06.006
7. Rudyka, E. A. Problemy obespecheniya kachestva vozdushnoy sredy v pererabatyvayuschey promyshlennosti / E. A. Rudyka, E. V. Baturina, V. A. Osipova // Ekonomika. Innovacii. Upravlenie kachestvom. 2015. № 1(10). S. 154–155. https://elibrary.ru/ukiztr
8. Sviridenko, G. M. Ocenka effektivnosti obezzarazhivaniya vozdushnoy sredy dioksidom hlora / G. M. Sviridenko, O. M. Shuhalova, D. S. Mamykin // Molochnaya promyshlennost'. 2025. № 1. S. 29–34. https://doi.org/10.21603/1019-8946-2025-1-22; https://elibrary.ru/ouattq
9. Chowdhury, Md. A. H. Comprehensive Approaches for Ensuring Microbial Safety in the Dairy Industry: Monitoring Systems, Inhibitory Strategies, and Future Prospects / Md. A. H. Chowdhury [et al.] // Food Control. 2024. Vol. 168. 110894. https://doi.org/10.1016/j.foodcont.2024.110894
10. Yue, C. Study on the disinfection effect of chlorine dioxide disinfectant (ClO2 ) on dental unit waterlines and its in vitro safety evaluation / C. Yue [et al.] // BMC Oral Health. 2024. Vol. 24(1). 648. https://doi.org/10.1186/s12903-024-04391-7
11. Liu, L. Study on the characteristics of metal corrosion and sterilizing effect of chlorine dioxide / L. Liu [et al.] // Desalination and Water Treatment. 2019. Vol. 152. P. 161–167. https://doi.org/10.5004/dwt.2019.24010
12. Hsu, C. S. Disinfection efficiency of chlorine dioxide gas in student cafeterias in Taiwan / C. S. Hsu, D. J. Huang // Journal of the Air & Waste Management Association. 2013. Vol. 63(7). P. 796–805. https://doi.org/10.1080/10962247.2012.735212
13. Watamoto, T. Clinical evaluation of chlorine dioxide for disinfection of dental instruments / T. Watamoto [et al.] // International Journal of Prosthodontics. 2013. Vol. 26(6). P. 541–549. https://doi.org/10.11607/ijp.3465
14. Xue, B. Effects of chlorine and chlorine dioxide on human rotavirus infectivity and genome stability / B. Xue [et al.] // Water Research. 2013. Vol. 47(10). P. 3329–3338. https://doi.org/10.1016/j.watres.2013.03.025
15. Miura, T. Antiviral Effect of Chlorine Dioxide against Influenza Virus and Its Application for Infection Control / T. Miura, T. Shibata // The Open Antimicrobial Agents Journal. 2010. Vol. 2(1). P. 71–78. https://doi.org/10.2174/18765181010020200071
16. Valderrama, W. B. Efficacy of chlorine dioxide against Listeria monocytogenes in brine chilling solutions / W. B. Valderrama, E. W. Mills, C. N. Cutter // Journal of Food Protection. 2009. Vol. 72(11). P. 2272–2277. https://doi.org/10.4315/0362-028X-72.11.2272
17. Taylor, R. H. Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium / R. H. Taylor [et al.] // Applied and Environmental Microbiology. 2000. Vol. 66(4). P. 1702–1705. https://doi.org/10.1128/AEM.66.4.1702-1705.2000
18. Gagnon, G. A. Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms / G. A. Gagnon [et al.] // Water Research. 2005. Vol. 39(9). P. 1809–1817. https://doi.org/10.1016/j.watres.2005.02.004
19. Vasil'ev, A. L. Sovremennye metody obezzarazhivaniya pit'evoy vody / A. L. Vasil'ev, A. S. Tarasov, L. D. Guseva // Privolzhskiy nauchnyy zhurnal. 2022. № 3(63). S. 83–89. https://elibrary.ru/exzsjc
20. Pavlovskaya, K. S. Sovremennye metody obezzarazhivaniya vody / K. S. Pavlovskaya // Vodosnabzhenie, himiya i prikladnaya ekologiya: Materialy Mezhdunarodnoy nauchno-prakticheskoy konferencii. – Gomel': Uchrezhdenie obrazovaniya «Belorusskiy gosudarstvennyy universitet transporta», 2021. – S. 123–124. https://elibrary.ru/fhkiqb
21. Hil'ko, K. S. Sposoby obezzarazhivaniya vody sportivnyh sooruzheniy / K. S. Hil'ko, S. E. Mhitaryan, V. V. Vanzha // Nauchnoe obespechenie agropromyshlennogo kompleksa: Sbornik statey po materialam 76-y nauchno-prakticheskoy konferencii studentov po itogam NIR za 2020 god. – Krasnodar: Kubanskiy gosudarstvennyy agrarnyy universitet imeni I.T. Trubilina, 2021. – S. 337 – 339. https://elibrary.ru/zwnbnw




