Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Heat stress occurs when the temperature exceeds +25°C (THI ≥ 77). It reduces milk yield and worsens the welfare of dairy cattle. This research featured methods that minimize the effects of heat stress in mild climate. As a buffer additive, sodium bicarbonate can stabilize metabolism and increase the resistance of animals to stress factors. The experiment was conducted on 30 lactating Holstein cows under simulated thermal stress (+30°C, humidity 65–70%). Sodium bicarbonate was administered with morning feed in doses of 150 g (group 1) and 200 g (group 2). The microclimate parameters were monitored by Hobo U12-012 sensors. The analysis indicators included milk yield, milk quality (fat, protein, somatic cell count), and hematological parameters (leukocytes, glucose, hemoglobin). The data was processed using variation statistics. The addition of 200 g of sodium bicarbonate could reduce the drop in daily milk yield to 9.1% (vs. 13.5% in the control group), as well as minimized changes in milk fat and protein by 0.20 and 0.17%, respectively. The level of somatic cells increased by only 15% (vs. 30.56% in the control). The hematological analysis showed steady leukocytes (a decrease of 0.93%) and a moderate increase in glucose (by 2.5%), which was used as a stress biomarker. The data obtained were consistent with similar studies conducted in tropical regions; however, the doses were adapted to short-term thermal stress in mild climate. In this research, 200 g sodium bicarbonate per day reduced the negative effects of heat stress on milk yield and the physiological state of cows. The developed functional and structural scheme of response makes it possible to integrate the temperature and humidity index and hematological data into digital microclimate management systems, thus providing a tailored approach to dairy cattle farming. The results may facilitate the technological optimization of dairy cattle diets in conditions of seasonal climatic fluctuations.
sodium bicarbonate, milk productivity, hematological dinamyc, heat stress, temperature and humidity index, digital monitoring of microclimate, seasonal heat loads, effectiveness of feed additives
1. Lobachevskiy, Ya. P. Cifrovye tehnologii i robotizirovannye tehnicheskie sredstva dlya sel'skogo hozyaystva / Ya. P. Lobachevskiy, A. S. Dorohov // Sel'skohozyaystvennye mashiny i tehnologii. 2021. T. 15, № 4. S. 6–10. https://doi.org/10.22314/2073-7599-2021-15-4-6-10; https://elibrary.ru/yfrzdv
2. Lobachevskiy, Ya. P. Principy formirovaniya sistem mashin i tehnologiy dlya kompleksnoy mehanizacii i avtomatizacii tehnologicheskih processov v rastenievodstve / Ya. P. Lobachevskiy, Yu. S. Cench // Sel'skohozyaystvennye mashiny i tehnologii. 2022. T. 16, № 4. S. 4–12. https://doi.org/10.22314/2073-7599-2022-16-4-4-12; https://elibrary.ru/idjfyv
3. Boonkum, W. Impact of Heat Stress on Milk Yield, Milk Fat-to-Protein Ratio, and Conception Rate in Thai–Holstein Dairy Cattle: A Phenotypic and Genetic Perspective / W. Boonkum [et al.] // Animals. 2024. Vol. 14(20). 3026. https://doi.org/10.3390/ani14203026
4. Mylostyvyi, R. Correlations between environmental factors and milk production of holstein cows / R. Mylostyvyi, O. Chernenko // Data. 2019. Vol. 4(3). 103. https://doi.org/10.3390/data4030103
5. Kic, P. Influence of External Thermal Conditions on Temperature–Humidity Parameters of Indoor Air in a Czech Dairy Farm during the Summer / P. Kic // Animals. 2022. Vol. 12(15). 1895. https://doi.org/10.3390/ani12151895
6. Armstrong, D. V. Heat Stress Interaction with Shade and Cooling / D. V. Armstrong // Journal of Dairy Science. 1994. Vol. 77(7). P. 2044–2050. https://doi.org/10.3168/jds.S0022-0302(94)77149-6
7. Polsky, L. Invited review: Effects of heat stress on dairy cattle welfare / L. Polsky, M. A. G. von Keyserlingk // Journal of Dairy Science. 2017. Vol. 100(11). R. 8645–8657. DOIhttps://doi.org/10.3168/jds.2017-12651.
8. Dovlatov, I. M. Vliyanie teplovogo stressa, opredelenie temperaturno-vlazhnostnogo indeksa / I. M. Dovlatov [i dr.] // Agrarnaya nauka. 2024. № 10. S. 171–176. https://doi.org/10.32634/0869-8155-2024-387-10-171-176; https://elibrary.ru/iywpbl
9. Dovlatov, I. M. Technology of Forced Ventilation of Livestock Premises Based on Flexible PVC Ducts / I. M. Dovlatov [et al.] // Lecture Notes in Networks and Systems. 2023. Vol 852. https://doi.org/10.1007/978-3-031-50330-6_34
10. Brügemann, K. Defining and evaluating heat stress thresholds in different dairy cow production systems / K. Brügemann [et al.] // Archiv fur Tierzucht. 2012. Vol. 55(1). P. 13–24. DOI:https://doi.org/10.5194/aab-55-13-2012. https://doi.org/10.5194/aab-55-13-2012
11. Zimbelman, R. B. A re-evaluation of the impact of Temperature Humidity Index (THI) and Black Globe Humidity Index (BGHI) on milk production in high producing dairy cows / R. B. Zimbelman [et al.]. – Western Dairy Management Conference. – The University of Arizona, Tucson, 2009. – P. 158–168.
12. Heinicke, J. Effects of the daily heat load duration exceeding determined heat load thresholds on activity traits of lactating dairy cows / J. Heinicke [et al.] // Journal of Thermal Biology. 2018. Vol. 77. P. 67–74. https://doi.org/10.1016/j.jtherbio.2018.08.012
13. Pramod, S. Analysis of the effects of thermal stress on milk production in a humid tropical climate using linear and non-linear models / S. Pramod [et al.] // Tropical Animal Health and Production. 2021. Vol. 53(1). 66. https://doi.org/10.1007/s11250-020-02525-x
14. Lovarelli, D. Assessing the effect of barns structures and environmental conditions in dairy cattle farms monitored in Northern Italy / D. Lovarelli [et al.] // Journal of Agricultural Engineering. 2021. Vol. 52(4). https://doi.org/10.4081/jae.2021.1229
15. Leliveld, L. M. C. Dairy Cow Behavior Is Affected by Period, Time of Day and Housing / L. M. C. Leliveld [et al.] // Animals. 2022. Vol. 12(4). 512. https://doi.org/10.3390/ani12040512
16. Collier, R. J. Gebremedhin Thermal Biology of Domestic Animals / R. J. Collier, K. G. Gebremedhin // Annual Review of Animal Biosciences. 2015. Vol. 3. P. 513–532. https://doi.org/10.1146/annurev-animal-022114-110659
17. Besedin, I. M. Sistemnyy effekt kratkovremennyh lokal'nyh temperaturnyh vozdeystviy slaboy intensivnosti na oblast' golovy / I. M. Besedin, M. A. Novikova, L. F. Kalenova // Medicinskaya nauka i obrazovanie Urala. 2015. T. 16, № 4(84). S. 55–58. https://elibrary.ru/vdqysr
18. Mohov, B. P. Genezis ispol'zovaniya obmennoy energii v laktacionnoy funkcii korov raznogo vozrasta i produktivnosti / B. P. Mohov // Vestnik Ul'yanovskoy gosudarstvennoy sel'skohozyaystvennoy akademii. 2020. № 4(52). S. 268–275. https://doi.org/10.18286/1816-4501-2020-4-268-275; https://elibrary.ru/gbnrwc




