с 01.01.2017 по 01.01.2024
Gurugram, Индия
Gurugram, Индия
Gurugram, Индия
Dehradun, Индия
Around the globe, solid waste generation rates are reaching 2.01 billion tons, resulting in a footprint of 0.78 kg per person per day as of 2020. It is expected to escalate by 70% and reach approximately 3.42 billion tons by the end of 2050, indicating that waste generating and its disposal are a relevant issue worldwide. Waste can be a source of various useful pharmaceutical and food raw materials, which partially solves the global waste problem. This comprehensive review paper focuses on different types of wastes that can yield carbohydrate polymers for pharmaceutical or food purposes. It covers systemic documentation and summarizes numerous scientific articles published in 2004–2022. The review demonstrates a great perspective for waste re-utilization as an alternative source of pharmaceutical and food materials. It provides a complete insight into the responsible approach to hazardous waste recycling, thus promoting research in bio-waste remediation, novel raw materials, and natural sustainability.
Agricultural waste, macromolecules, carbohydrate polymers, excipients, raw material, environment, waste generating
1. European Commission [Internet]. [cited 2024 Feb 10]. Available from: https://commission.europa.eu/index_en
2. Ribic B, Voca N, Ilakovac B. Concept of sustainable waste management in the city of Zagreb: Towards the implementation of circular economy approach. Journal of the Air and Waste Management Association. 2017;67(2):241–259. https://doi.org/10.1080/10962247.2016.1229700
3. Government of India. Solid Waste Management Handeling Rules. 2000.
4. Klemm D, Heublein B, Fink H-P, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition. 2005;44(22):3358–3393. https://doi.org/10.1002/anie.200460587
5. Miao X, Lin J, Tian F, Li X, Bian F, Wang J. Cellulose nanofibrils extracted from the byproduct of cotton plant. Carbohydrate Polymers. 2016;136:841–850. https://doi.org/10.1016/j.carbpol.2015.09.056
6. Yeasmin MS, Mondal MIH. Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. International Journal of Biological Macromolecules. 2015;80:725–731. https://doi.org/10.1016/j.ijbiomac.2015.07.040
7. Bicu I, Mustata F. Cellulose extraction from orange peel using sulfite digestion reagents. Bioresource Technology. 2011;102(21):10013–10019. https://doi.org/10.1016/j.biortech.2011.08.041
8. Yaşar F, Toǧrul H, Arslan N. Flow properties of cellulose and carboxymethyl cellulose from orange peel. Journal of Food Engineering. 2007;81(1):187–199. https://doi.org/10.1016/j.jfoodeng.2006.10.022
9. Al-Hoqbani AA, Abdel-Halim ES, Al-Deyab SS. Extraction of palm tree cellulose and its functionalization via graft copolymerization. International Journal of Biological Macromolecules. 2014;70:275–283. https://doi.org/10.1016/j.ijbiomac.2014.07.009
10. Qiu H-W, Zhou Q-C, Geng J. Pyrolytic and kinetic characteristics of Platycodon grandiflorum peel and its cellulose extract. Carbohydrate Polymers. 2015;117:644–649. https://doi.org/10.1016/j.carbpol.2014.09.034
11. Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls. Bioresource Technology. 2008;99(6):1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029
12. Reddy N, Yang Y. Natural cellulose fibers from soybean straw. Bioresource Technology. 2009;100(14):3593–3598. https://doi.org/10.1016/j.biortech.2008.09.063
13. Reddy N, Yiqi Y. Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems. Journal of Agricultural and Food Chemistry. 2007;55(14):5569–5574. https://doi.org/10.1021/jf0707379
14. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT. Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers. 2010;80(3):852–859. https://doi.org/10.1016/j.carbpol.2009.12.043
15. Lu P, Hsieh Y-L. Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydrate Polymers. 2012;87(4):2546–2553. https://doi.org/10.1016/j.carbpol.2011.11.023
16. Fauziyah M, Widiyastuti W, Balgis R, Setyawan H. Production of cellulose aerogels from coir fibers via an alkali-urea method for sorption applications. Cellulose. 2019;26:9583–9598. https://doi.org/10.1007/s10570-019-02753-x
17. Amarasinghe BMWPK, Williams RA. Tea waste as a low cost adsorbent for the removal of Cu and Pb from waste water. Chemical Engineering Journal. 2007;132(1–3):299–309. https://doi.org/10.1016/j.cej.2007.01.016
18. Kalita RD, Nath Y, Ochubiojo ME, Buragohain AK. Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces B: Biointerfaces. 2013;108:85–89. https://doi.org/10.1016/j.colsurfb.2013.02.016
19. Shanmugam N, Nagarkar RD, Kurhade M. Microcrystalline cellulose powder from banana pseudostem fibres using bio-chemical route. Indian Journal of Natural Products and Resources. 2015;6(1):42–50.
20. Bhimte NA, Tayade PT. Evaluation of microcrystalline cellulose prepared from sisal fibers as a tablet excipient: A technical note. AAPS PharmSciTech. 2007;8(1):8. https://doi.org/10.1208/pt0801008
21. Nwadiogb JO, Igwe AA, Okoye NH, Chime CC. Extraction and characterization of microcrystalline cellulose from mango kernel: A waste management approach. Der Pharma Chemica. 2015;7(11):1–7.
22. Ejikeme PM. Investigation of the physicochemical properties of microcrystalline cellulose from agricultural wastes I: orange mesocarp. Cellulose. 2008;15:141–147. https://doi.org/10.1007/s10570-007-9147-7
23. Nwachukwu N, Ugoeze KC, Okoye AC, Chinaka CN. Application of microcrystalline cellulose from Saccharum officinarum as dry binder in ciprofloxacin tablet formulation. Journal of Pharmacy and Bioresources. 2018;15(1):48–55. https://doi.org/10.4314/jpb.v15i1.6
24. Azubuike CP, Odulaja JO, Okhamafe AO. Physicotechnical, spectroscopic and thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells. Journal of Excipients and Food Chemicals. 2012;3(3):106–115.
25. Haafiz MKM, Eichhorn SJ, Hassan A, Jawaid M. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate Polymers. 2013;93(2):628–634. https://doi.org/10.1016/j.carbpol.2013.01.035
26. Nakthong N, Wongsagonsup R, Amornsakchai T. Characteristics and potential utilizations of starch from pineapple stem waste. Industrial Crops and Products. 2017;105:74–82. https://doi.org/10.1016/j.indcrop.2017.04.048
27. Suhartini S, Hidayat N, Rosaliana E. Influence of powdered Moringa oleifera seeds and natural filter media on the characteristics of tapioca starch wastewater. International Journal of Recycling of Organic Waste in Agriculture. 2013:2:12. https://doi.org/10.1186/2251-7715-2-12
28. Santana ÁL, Zabot GL, Osorio-Tobón JF, Johner JCF, Coelho AS, Schmiele M, et al. Starch recovery from turmeric wastes using supercritical technology. Journal of Food Engineering. 2017;214:266–276. https://doi.org/10.1016/j.jfoodeng.2017.07.010
29. Chel-Guerrero L, Barbosa-Martín E, Martínez-Antonio A, González-Mondragón E, Betancur-Ancona D. Some physicochemical and rheological properties of starch isolated from avocado seeds. International Journal of Biological Macromolecules. 2016;86:302–308. https://doi.org/10.1016/j.ijbiomac.2016.01.052
30. Zhang Y, Zhang Y, Li B, Wang X, Xu F, Zhu K, et al. In vitro hydrolysis and estimated glycemic index of jackfruit seed starch prepared by improved extrusion cooking technology. International Journal of Biological Macromolecules. 2019;121:1109–1117. https://doi.org/10.1016/j.ijbiomac.2018.10.075
31. Liu Y, Guo Y, Zhu Y, An D, Gao W, Wang Z, et al. A sustainable route for the preparation of activated carbon and silica from rice husk ash. Journal of Hazardous Materials. 2011;186(2–3):1314–1319. https://doi.org/10.1016/j.jhazmat.2010.12.007
32. Li T, Wang T. Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure. Materials Chemistry and Physics. 2008;112(2):398–401. https://doi.org/10.1016/j.matchemphys.2008.05.066
33. Prasetyoko D, Ramli Z, Endud S, Hamdan H, Sulikowski B. Conversion of rice husk ash to zeolite beta. Waste Management. 2006;26(10):1173–1179. https://doi.org/10.1016/j.wasman.2005.09.009
34. Salavati-Niasari M, Javidi J. Sonochemical synthesis of silica and silica sulfuric acid nanoparticles from rice husk ash: A new and recyclable catalyst for the acetylation of alcohols and phenols under heterogeneous conditions. Combinatorial Chemistry and High Throughput Screening. 2012;15(9):705–712. https://doi.org/10.2174/138620712803519743
35. Palanivelu R, Padmanaban P, Sutha S, Rajendran V. Inexpensive approach for production of high-surface-area silica nanoparticles from rice hulls biomass. IET Nanobiotechnology. 2014;8(4):290–294. https://doi.org/10.1049/iet-nbt.2013.0057
36. Vaibhav V, Vijayalakshmi U, Roopan SM. Agricultural waste as a source for the production of silica nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;139:515–520. https://doi.org/10.1016/j.saa.2014.12.083
37. Poverenov E, Arnon-Rips H, Zaitsev Ya, Bar V, Danay O, Horev B, et al. Potential of chitosan from mushroom waste to enhance quality and storability of fresh-cut melons. Food Chemistry. 2018;268:233–241. https://doi.org/10.1016/j.foodchem.2018.06.045
38. Bilbao-Sainz C, Chiou B-S, Williams T, Wood D, Du W-X, Sedej I, et al. Vitamin D-fortified chitosan films from mushroom waste. Carbohydrate Polymers. 2017;167:97–104. https://doi.org/10.1016/j.carbpol.2017.03.010
39. Mulimani VH, Ramalingam GNP. α-Amylase production by solid state fermentation: A new practical approach to biotechnology courses. Biochemical Education. 2000;28(3):161–163. https://doi.org/10.1016/S0307-4412(99)00145-4
40. Baysal Z, Uyar F, Aytekin Ç̧. Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochemistry. 2003;38(12):1665–1668. https://doi.org/10.1016/S0032-9592(02)00150-4
41. Ramachandran S, Patel AK, Nampoothiri KM, Francis F, Nagy V, Szakacs G, et al. Coconut oil cake – a potential raw material for the production of α-amylase. Bioresource Technology. 2004;93(2):169–174. https://doi.org/10.1016/j.biortech.2003.10.021
42. dos Santos TC, Gomes DPP, Bonomo RCF, Franco M. Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chemistry. 2012;133(4):1299–1304. https://doi.org/10.1016/j.foodchem.2011.11.115
43. Waghmare PR, Kshirsagar SD, Saratale RG, Govindwar SP, Saratale GD. Production and characterization of cellulolytic enzymes by isolated Klebsiella sp. PRW-1 using agricultural waste biomass. Emirates Journal of Food and Agriculture. 2014;26(1):44–59. https://doi.org/10.9755/ejfa.v26i1.15296
44. Sabu A, Pandey A, Jaafar Daud M, Szakacs G. Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresource Technology. 2005;96(11):1223–1228. https://doi.org/10.1016/j.biortech.2004.11.002
45. Bhoite RN, Murthy PS. Biodegradation of coffee pulp tannin by Penicillium verrucosum for production of tannase, statistical optimization and its application. Food and Bioproducts Processing. 2015;94:727–735. https://doi.org/10.1016/j.fbp.2014.10.007
46. Malgireddy NR, Nimma LNR. Optimal conditions for production of Tannase from newly isolated Aspergillus terrus under solid state fermentation. European Journal of Biotechnology and Bioscience. 2015;3(2):56–64.
47. Gawande PV, Kamat MY. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. Journal of Applied Microbiology. 1999;87(4):511–519. https://doi.org/10.1046/j.1365-2672.1999.00843.x
48. Sonia KG, Chadha BS, Saini HS. Sorghum straw for xylanase hyper-production by Thermomyces lanuginosus (D2W3) under solid-state fermentation. Bioresource Technology. 2005;96(14):1561–1569. https://doi.org/10.1016/j.biortech.2004.12.037
49. Germano S, Pandey A, Osaku CA, Rocha SN, Soccol CR. Characterization and stability of proteases from Penicillium sp. produced by solid-state fermentation. Enzyme and Microbial Technology. 2003;32(2):246–251. https://doi.org/10.1016/S0141-0229(02)00283-1
50. Kandasamy S, Muthusamy G, Balakrishnan S, Duraisamy S, Thangasamy S, Seralathan K-K, et al. Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech. 2016;6:167. https://doi.org/10.1007/s13205-016-0481-z
51. Aivalioti M, Cossu R, Gidarakos E. New opportunities in industrial waste management. Waste Management. 2014;34(10):1737–1738. https://doi.org/10.1016/j.wasman.2014.07.006
52. Hong F, Guo X, Zhang S, Han S, Yang G, Jönsson LJ. Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technology. 2012;104:503–508. https://doi.org/10.1016/j.biortech.2011.11.028
53. Sun X, Lu C, Zhang W, Tian D, Zhang X. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation. Carbohydrate Polymers. 2013;98(1):405–411. https://doi.org/10.1016/j.carbpol.2013.05.089
54. Wang Z, Yao Z, Zhou J, Zhang Y. Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydrate Polymers. 2017;157:945–952. https://doi.org/10.1016/j.carbpol.2016.10.044
55. Lu P, Hsieh Y-L. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers. 2012;87(1):564–573. https://doi.org/10.1016/j.carbpol.2011.08.022
56. Yadav N, Diwan A, Sharma MK, Ajmal G, Kumawat MK. Biological activity of rice straw-derived materials: An overview. Uttar Pradesh Journal of Zoology. 2021;42(24):1256–1264. https://doi.org/10.56557/upjoz/2021/v42i243243
57. Yadav N, Rani S, Sharma MK, Kumawat MK, Diwan A. Pharmaceutical applications of RS: An overview. Uttar Pradesh Journal of Zoology. 2021;42(24):1335–1343. https://doi.org/10.56557/upjoz/2021/v42i243258
58. Fan X, Gao Y, He W, Hu H, Tian M, Wang K, et al. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydrate Polymers. 2016;151:1068–1072. https://doi.org/10.1016/j.carbpol.2016.06.062
59. Mariño M, da Silva LL, Durán N, Tasic L. Enhanced materials from nature: Nanocellulose from citrus waste. Molecules. 2015;20(4):5908–5923. https://doi.org/10.3390/molecules20045908
60. Shahabi-Ghahfarrokhi I, Khodaiyan F, Mousavi M, Yousefi H. Green bionanocomposite based on kefiran and cellulose nanocrystals produced from beer industrial residues. International Journal of Biological Macromolecules. 2015;77:85–91. https://doi.org/10.1016/j.ijbiomac.2015.02.055
61. Kaur S, Dhillon GS. The versatile biopolymer chitosan: Potential sources, evaluation of extraction methods and applications. Critical Reviews in Microbiology. 2014;40(2):155–175. https://doi.org/10.3109/1040841X.2013.770385
62. Sedaghat F, Yousefzadi M, Toiserkani H, Najafipour S. Bioconversion of shrimp waste Penaeus merguiensis using lactic acid fermentation: An alternative procedure for chemical extraction of chitin and chitosan. International Journal of Biological Macromolecules. 2017;104:883–888. https://doi.org/10.1016/j.ijbiomac.2017.06.099
63. Nwe N, Furuike T, Tamura H. Isolation and characterization of chitin and chitosan from marine origin. Advances in Food and Nutrition Research. 2014;72:1–15. https://doi.org/10.1016/B978-0-12-800269-8.00001-4
64. Sayari N, Sila A, Abdelmalek BE, Abdallah RB, Ellouz-Chaabouni S, Bougatef A, et al. Chitin and chitosan from the Norway lobster by-products: Antimicrobial and anti-proliferative activities. International Journal of Biological Macromolecules. 2016;87:163–171. https://doi.org/10.1016/j.ijbiomac.2016.02.057
65. Baron RD, Pérez LL, Salced JM, Córdoba LP, Sobral PJA. Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from Orange (Citrus sinensis Osbeck) peel. International Journal of Biological Macromolecules. 2017;98:676–683. https://doi.org/10.1016/j.ijbiomac.2017.02.004
66. Mokrejs P, Langmaier F, Mladek M, Janacova D, Kolomaznik K, Vasek V. Extraction of collagen and gelatine from meat industry by-products for food and non food uses. Waste Managementnd a Research. 2009;27(1):31–37. https://doi.org/10.1177/0734242X07081483
67. Bower CK, Avena-Bustillos RJ, Hietala KA, Bilbao-Sainz C, Olsen CW, McHugh TH. Dehydration of pollock skin prior to gelatin production. Journal of Food Science. 2010;75(4):C317–C321. https://doi.org/10.1111/j.1750-3841.2010.01596.x
68. Boran G, Regenstein JM. Optimization of gelatin extraction from silver carp skin. Journal of Food Science. 2009;74(8):E432–E441. https://doi.org/10.1111/j.1750-3841.2009.01328.x
69. Liu Z-S, Li W-K, Huang C-Y. Synthesis of mesoporous silica materials from municipal solid waste incinerator bottom ash. Waste Management. 2014;34(5):893–900. https://doi.org/10.1016/j.wasman.2014.02.016
70. Fan Y, Zhang F-S, Zhu J, Liu Z. Effective utilization of waste ash from MSW and coal co-combustion power plant – Zeolite synthesis. Journal of Hazardous Materials. 2008;153(1–2):382–388. https://doi.org/10.1016/j.jhazmat.2007.08.061
71. Srasri K, Thongroj M, Chaijiraaree P, Thiangtham S, Manuspiya H, Pisitsak P, et al. Recovery potential of cellulose fiber from newspaper waste: An approach on magnetic cellulose aerogel for dye adsorption material. International Journal of Biological Macromolecules. 2018;119:662–668. https://doi.org/10.1016/j.ijbiomac.2018.07.123
72. Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydrate Polymers. 2015;125:360–366. https://doi.org/10.1016/j.carbpol.2015.02.063
73. Cavka A, Alriksson B, Rose SH, van Zyl WH, Jonsson LJ. Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast and recombinant cellulase-producing Aspergillus niger. Journal of Industrial Microbiology and Biotechnology. 2014;41(8):1191–1200. https://doi.org/10.1007/s10295-014-1457-9
74. Ma H, Yang J, Jia Y, Wang Q, Tashiro Y, Sonomoto K. Stillage reflux in food waste ethanol fermentation and its by-product accumulation. Bioresource Technology. 2016;209:254–258. https://doi.org/10.1016/j.biortech.2016.02.127
75. Ma H, Yue S, Li H, Wang Q, Tu M. Recovery of lactic acid and other organic acids from food waste ethanol fermentation stillage: Feasibility and effects of substrates. Separation and Purification Technology. 2019;209:223–228. https://doi.org/10.1016/j.seppur.2018.07.031
76. Kim M-S, Na J-G, Lee M-K, Ryu H, Chang Y-K, Triolo JM, et al. More value from food waste: Lactic acid and biogas recovery. Water Research. 2016;96:208–216.
77. Danner H, Madzingaidzo L, Holzer M, Mayrhuber L, Braun R. Extraction and purification of lactic acid from silages. Bioresource Technology. 2000;75(3):181–187. https://doi.org/10.1016/S0960-8524(00)00068-7
78. Wang R, Chen Y, Xu Z. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments. Environmental Science and Technology. 2015;49(10):5999–6008. https://doi.org/10.1021/acs.est.5b00104
79. Pawar S, Kumar K, Gupta MK, Rawal RK. Synthetic and medicinal perspective of fused-thiazoles as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry. 2021;21(11):1379–1402. https://doi.org/10.2174/1871520620666200728133017
80. Konar D, Maru S, Kar S, Kumar K. Synthesis and clinical development of palbociclib: An overview. Medicinal Chemistry. 2022;18(1):2–25. https://doi.org/10.2174/1573406417666201204161243
81. Yadav N, Sharma MK, Diwan A. Rice straw-based biomaterials for tablet coating and a method thereof. Indian patent application no 202211031062. 2022.
82. Kumar K, Rawal RK. CuI/DBU-mediated MBH reaction of isatins: A convenient synthesis of 3-substituted-3-hydroxy-2-oxindole. ChemistrySelect. 2020;5(10):3048–3051. https://doi.org/10.1002/slct.201903703
83. Kumawat MK, Sharma MK, Tewatia S. 4-aminoquinoline derivatives as antimalarial agents: molecular docking studi. Uttar Pradesh Journal of Zoology. 2021;42(24):1286–1292. https://doi.org/10.56557/upjoz/2021/v42i243248
84. Kumawat MK, Sharma MK, Yadav N, Singh B. 4-Aminoquinolines as antimalarial agents: A review of a medicinal chemistry perspective. International Journal of Life science and Pharma Research. 2022;13(1):P83–P97. https://doi.org/10.22376/ijlpr.2023.13.SP1.P83-P97
85. Sharma MK, Yadav N, Kumawat MK, Iqbal MR. The significance of urotensin-II receptor in cardiovascular diseases. Uttar Pradesh Journal of Zoology. 2021;42(24):1438–1447. https://doi.org/10.56557/upjoz/2021/v42i243282
86. Kumar N, Sharma MK, Kumawat MK. Molecular docking study of selected phytochemicals with COVID-19 main protease. Uttar Pradesh Journal of Zoology. 2021;42(24):1265–1285. https://doi.org/10.56557/upjoz/2021/v42i243244
87. Ajmal G, Yadav N, Kumawat MK, Sharma MK, Iqbal MR. Application of electrospun nanofiber in wound healing: trends and recent patents analysis. International Journal of Life science and Pharma Research. 2022;13(1):L37–L47. https://doi.org/10.22376/ijlpr.2023.13.SP1.L37-47



