GUT MICROBIOTA AND ITS ROLE IN DEVELOPMENT OF CHRONIC DISEASE AND AGING
Abstract and keywords
Abstract (English):
The gut microbiota is called the “main organ” of the host organism due to its important role in maintaining the normal functioning of the body. Dysbacteriosis is one of the risk factors for chronic diseases. It can cause metabolic and neural disorders, inflammatory and other reactions that reduce a healthy lifespan. This calls for developing bioactive supplements with a geroprotective effect to promote health. In this review, we aimed to study the relationship between the gut microbiota and the host organism. This systematic review covered scientific papers published from 2013–2024 and indexed by eLIBRARY.RU, the National Center for Biotechnology Information, and Scopus. Dysbacteriosis can lead to a number of diseases that have a cumulative negative effect on the gut microbiota. Regardless of the state of health, the following factors affect the gut microbiota in the decreasing order: diet > sleep > circadian rhythm > physical activity. There is a need for developing bioactive supplements with geroprotective potential to normalize the functioning of the microbiota. In particular, these supplements can contain probiotics, prebiotics, and plant metabolites. Lactococcus, Lactobacillus, and Bifidobacterium can be used as probiotics. Prebiotics include arabinogalactan, galactooligosaccharides, inulin, lactulose, oligofructose, xylo-oligosaccharide, fructooligosaccharide, or their mixtures. Among plant metabolites, especially important are polyphenols, including the ones from green tea, fruits and berries, as well as resveratrol, allicin, quercetin, curcumin, and others. However, not all of them are easily bioavailable and soluble. Encapsulation is often used to address the problem of bioavailability. The ketogenic diet and fasting-mimicking diets have the potential to increase a healthy life expectancy. The potential of dietary supplements to normalize the gut microbiota can be studied by in vitro experiments that use artificial gastrointestinal tracts. Our results can provide a foundation for further research into the role of the gut microbiota in maintaining the health of the host organism.

Keywords:
Microbiota, gut, nutrition, aging, body functioning gut-host associations, metabolits, life expectancy
Text
Text (PDF): Read Download
References

1. Strasser B, Wolters M, Weyh C, Krüger K, Ticinesi A. The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients. 2021;13(6):2045. https://doi.org/10.3390/nu13062045

2. Kytikova OYu, Denisenko YuK, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA. The short chain free fatty acids and their receptors in the microbiotic concept for asthma development. Annals of the Russian Academy of Medical Sciences. 2022;77(2):131–142. (In Russ.). https://doi.org/10.15690/vramn1608

3. Hoefer CC, Hollon LK, Campbell JA. The role of the human gutome on chronic disease: A review of the microbiome and nutrigenomics. Advances in Molecular Pathology. 2021;4:103–116. https://doi.org/10.1016/j.yamp.2021.06.003

4. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. https://doi.org/10.1136/bmj.k2179

5. Shishin MV, Prosekov AYu. Investigation of morphological and antimicrobial properties of intestinal tract microorganisms. Food Processing: Techniques and Technology. 2015;39(4):131–137. (In Russ.). https://www.elibrary.ru/VBIUTF

6. Meslier V, Laiola M, Roager HM, de Filippis F, Roume H, Quinquis B, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 2020;69(7):1258–1268. https://doi.org/10.1136/gutjnl-2019-320438

7. Chen Y, Zhou J, Wang L. Role and mechanism of gut microbiota in human disease. Frontiers in Cellular and Infection Microbiology. 2021;11:625913. https://doi.org/10.3389/fcimb.2021.625913

8. Kolokolova AYu, Kishilova SA, Rozhkova IV, Mitrova VA. The role of postbiotic composition in the growth stimulating of bifidobacteria. Food Metaengineering. 2024;2(2):12–21. (In Russ.). https://doi.org/10.37442/fme.2024.2.56

9. Wu L, Zeng T, Zinellu A, Rubino S, Kelvin DJ, Carru C. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. mSystems. 2019;4(4):e00325-19. https://doi.org/10.1128/mSystems.00325-19

10. Fedorova AM, Dyshlyuk LS, Milentyeva IS, Loseva AI, Neverova OA, Khelef MEA. Geroprotective activity of trans-cinnamic acid isolated from the Baikal skullcap (Scutellaria baicalensis). Food Processing: Techniques and Technology. 2022;52(3):582–591. https://doi.org/10.21603/2074-9414-2022-3-2388

11. Milentyeva IS, Vesnina AD, Fedorova AM, Ostapova EV, Larichev TA. Chlorogenic acid and biohanin A from Trifolium pratense L. Callus culture extract: functional activity in vivo. Food Processing: Techniques and Technology. 2023;53(4):754–765. (In Russ.). https://doi.org/10.21603/2074-9414-2023-4-2475

12. Litvyak VV, Shylau VV, Kuzina LB, Roslyakov YuF. The method of personalized nutrition considering genetically determined factors. Food Metaengineering. 2023;1(1):26–62. (In Russ.). https://doi.org/10.37442/fme.2023.1.5

13. Agarkova EYu. Belyakova ZYu, Kondratenko VV. Principles of formation of modular technologies of enteral nutrition products. Food Metaengineering. 2023;1(3):33–46. (In Russ.). https://doi.org/10.37442/fme.2023.3.26

14. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: An integrative view. Cell. 2012;148(6):1258–1270. https://doi.org/10.1016/j.cell.2012.01.035

15. Thaiss CA, Itav S, Rothschild D, Meijer MT, Levy M, Moresi C, et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature. 2016;540:544–551. https://doi.org/10.1038/nature20796

16. Bikbavova GR, Livzan MA. Modulation of intestinal microbiome in the formationand progression of ulcerative colitis. Annals of the Russian Academy of Medical Sciences. 2020;75(6):577–584. (In Russ.). https://doi.org/10.15690/vramn1238

17. Sha S, Ni L, Stefil M, Dixon M, Mouraviev V. The human gastrointestinal microbiota and prostate cancer development and treatment. Investigative and Clinical Urology. 2020;61:S43–S50. https://doi.org/10.4111/icu.2020.61.S1.S43

18. Shabbir U, Rubab M, Daliri EB-M, Chelliah R, Javed A, Oh D-H. Curcumin, quercetin, catechins and metabolic diseases: The role of gut microbiota. Nutrients. 2021;13(1):206. https://doi.org/10.3390/nu13010206

19. Aya V, Flórez A, Perez L, Ramírez JD. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS ONE. 2021;16(2):e0247039. https://doi.org/10.1371/journal.pone.0247039

20. Ivashkin VT, Medvedev OS, Poluektova EA, Kudryavtseva AV, Bakhtogarimov IR, Karchevskaya AE. Direct and indirect methods for studying human gut microbiota. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022;32(2):19–34. (In Russ.). https://doi.org/10.22416/1382-4376-2022-32-2-19-34

21. Zhong KX, Cho A, Deeg CM, Chan AM, Suttle CA. Revealing the composition of the eukaryotic microbiome of oyster spat by CRISPR-Cas Selective Amplicon Sequencing (CCSAS). Microbiome. 2021;9:230. https://doi.org/10.1186/s40168-021-01180-0

22. Caruso R, Lo BC, Núñez G. Host-microbiota interactions in inflammatory bowel disease. Nature Reviews Immunology. 2020;20:411–426. https://doi.org/10.1038/s41577-019-0268-7

23. Schaubeck M, Clavel T, Calasan J, Lagkouvardos I, Haange SB, Jehmlich N, et al. Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence. Gut. 2016;65(2):225–237. https://doi.org/10.1136/gutjnl-2015-309333

24. Eftychi C, Schwarzer R, Vlantis K, Wachsmuth L, Basic M, Wagle P, et al. Temporally distinct functions of the cytokines IL-12 and IL-23 drive chronic colon inflammation in response to intestinal barrier impairment. Immunity. 2019;51(2):367–380.e4. https://doi.org/10.1016/j.immuni.2019.06.008

25. Farhangi MA, Vajdi M. Gut microbiota-associated trimethylamine N-oxide and increased cardiometabolic risk in adults: A systematic review and dose-response meta-analysis. Nutrition Reviews. 2021;79(9):1022–1042. https://doi.org/10.1093/nutrit/nuaa111

26. Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/-Mice. Circulation. 2016;133(24):2434–2446. https://doi.org/10.1161/CIRCULATIONAHA.115.019645

27. Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Current Obesity Reports. 2019;8:317–332. https://doi.org/10.1007/s13679-019-00352-2

28. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. https://doi.org/10.1038/nature05414

29. Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in Microbiology. 2014;5:190. https://doi.org/10.3389/fmicb.2014.00190

30. Crusell MKW, Hansen TH, Nielsen T, Allin KH, Rühlemann MC, Damm P, et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome. 2018;6:89. https://doi.org/10.1186/s40168-018-0472-x

31. Chukhlovin AB, Dudurich VV, Kusakin AV, Polev DE, Ermachenko ED, Aseev MV, et al. Evaluation of gut microbiota in healthy persons and type 1 diabetes mellitus patients in North-Western Russia. Microorganisms. 2023;11(7):1813. https://doi.org/10.3390/microorganisms11071813

32. van Heck JIP, Gacesa R, Stienstra R, Fu J, Zhernakova A, Harmsen HJM, et al. The gut microbiome composition is altered in long-standing type 1 diabetes and associates with glycemic control and disease-related complications. Diabetes Care. 2022;45(9):2084–2094. https://doi.org/10.2337/dc21-2225

33. Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. The Journal of Clinical Investigation. 2015;125(1):386–402. https://doi.org/10.1172/JCI76738

34. Li Q, Wang C, Tang C, He Q, Li N, Li J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn's disease. Journal of Clinical Gastroenterology. 2014;48(6):513–523. https://doi.org/10.1097/MCG.0000000000000035

35. Sukhina MA, Yudin SM, Zagainova AV, Makarov VV, Veselov AV, Anosov IS, et al. Peculiarities of microbiota in patients with inflammatory intestinal diseases. Annals of the Russian Academy of Medical Sciences. 2022;77(3):165–171. (In Russ.). https://doi.org/10.15690/vramn1480

36. Si H, Yang Q, Hu H, Ding C, Wang H, Lin X. Colorectal cancer occurrence and treatment based on changes in intestinal flora. Seminars in Cancer Biology. 2021;70:3–10. https://doi.org/10.1016/j.semcancer.2020.05.004

37. Kishikawa T, Maeda Y, Nii T, Motooka D, Matsumoto Y, Matsushita M, et al. Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Annals of the Rheumatic Diseases. 2020;79(1):103–111. https://doi.org/10.1136/annrheumdis-2019-215743

38. Yu D, Du J, Pu X, Zheng L, Chen S, Wang N, et al. The gut microbiome and metabolites are altered and interrelated in patients with rheumatoid arthritis. Frontiers in Cellular and Infection Microbiology. 2022;11:763507. https://doi.org/10.3389/fcimb.2021.763507

39. Chen Y, Ma C, Liu L, He J, Zhu C, Zheng F, et al. Analysis of gut microbiota and metabolites in patients with rheumatoid arthritis and identification of potential biomarkers. Aging. 2021;13(20):23689–23701. https://doi.org/10.18632/aging.203641

40. Sun X, Wang Y, Li X, Wang M, Dong J, Tang W, et al. Alterations of gut fungal microbiota in patients with rheumatoid arthritis. PeerJ. 2022;10:e13037. https://doi.org/10.7717/peerj.13037

41. Huang Z, Chen C, Tan L, Ling Y, Ma W, Zhang J. 16S rRNA gene sequencing of gut microbiota in rheumatoid arthritis treated with 99Tc-MDP. Pharmacogenomics and Personalized Medicine. 2024;17:237–249. https://doi.org/10.2147/PGPM.S451065

42. Miao Z, Lin J, Mao Y, Chen G, Zeng F, Dong H, et al. Erythrocyte n-6 polyunsaturated fatty acids, gut microbiota, and incident type 2 diabetes: A prospective cohort study. Diabetes Care. 2020;43(10):2435–2443. https://doi.org/10.2337/dc20-0631

43. Vesnina A, Prosekov A, Atuchin V, Minina V, Ponasenko A. Tackling atherosclerosis via selected nutrition. International Journal of Molecular Sciences. 2022;23(15):8233. https://doi.org/10.3390/ijms23158233

44. Duque-Molina C. Comprehensive Care Protocols, a strategy for chronic diseases. Revista Médica del Instituto Mexicano del Seguro Social. 2022;60:S1–S3. (In Spanish).

45. Wang T, Wang H, Zeng Y, Cai X, Xie L. Health beliefs associated with preventive behaviors against noncommunicable diseases. Patient Education and Counseling. 2022;105(1):173–181. https://doi.org/10.1016/j.pec.2021.05.024

46. Kaybysheva VO, Zharova ME, Filimendikova KYu, Nikonov EL. Human microbiome: age-related changes and functions. Russian Journal of Evidence-Based Gastroenterology. 2020;9(2):42–55. (In Russ.). https://doi.org/10.17116/dokgastro2020902142

47. Wilms E, An R, Smolinska A, Stevens Y, Weseler AR, Elizalde M, et al. Galacto-oligosaccharides supplementation in prefrail older and healthy adults increased faecal bifidobacteria, but did not impact immune function and oxidative stress. Clinical Nutrition. 2021;40(5):3019–3031. https://doi.org/10.1016/j.clnu.2020.12.034

48. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. https://doi.org/10.1038/nature11234

49. King CH, Desai H, Sylvetsky AC, LoTempio J, Ayanyan S, Carrie J, et al. Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS ONE. 2019;14(9):e0206484. https://doi.org/10.1371/journal.pone.0206484

50. Vesnina A, Prosekov A, Kozlova O, Atuchin V. Genes and eating preferences, their roles in personalized nutrition. Genes. 2020;11(4):357. https://doi.org/10.3390/genes11040357

51. Chaplygina OS, Prosekov AYu, Vesnina AD. Determining the residual amount of amphenicol antibiotics in milk and dairy products. Food Processing: Techniques and Technology. 2022;52(1):79–88. (In Russ.). https://doi.org/10.21603/2074-9414-2022-1-79-88

52. Thriene K, Michels KB. Human gut microbiota plasticity throughout the life course. International Journal of Environmental Research and Public Health. 2023;20(2):1463. https://doi.org/10.3390/ijerph20021463

53. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–215. https://doi.org/10.1038/nature25973

54. Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. The ISME Journal. 2010;4(2):232–241. https://doi.org/10.1038/ismej.2009.112

55. He W, Bertram HC. NMR-based metabolomics to decipher the molecular mechanisms in the action of gut-modulating foods. Foods. 2022;11(17):2707. https://doi.org/10.3390/foods11172707

56. Lanng SK, Zhang Y, Christensen KR, Hansen AK, Nielsen DS, Kot W, et al. Partial substitution of meat with insect (Alphitobius diaperinus) in a carnivore diet changes the gut microbiome and metabolome of healthy rats. Foods. 2021;10(8):1814. https://doi.org/10.3390/foods10081814

57. Thøgersen R, Castro-Mejía JL, Sundekilde UK, Hansen LH, Gray N, Kuhnle G, et al. Inulin and milk mineral fortification of a pork sausage exhibits distinct effects on the microbiome and biochemical activity in the gut of healthy rats. Food Chemistry. 2020;331:127291. https://doi.org/10.1016/j.foodchem.2020.127291

58. Emwas A-H, Roy R, McKay RT, Tenori L, Saccenti E, Nagana Gowda GA, et al. NMR spectroscopy for metabolomics research. Metabolites. 2019;9(7):123. https://doi.org/10.3390/metabo9070123

59. Cameron SJS, Takáts Z. Mass spectrometry approaches to metabolic profiling of microbial communities within the human gastrointestinal tract. Methods. 2018;149:13–24. https://doi.org/10.1016/j.ymeth.2018.04.027

60. Chen MX, Wang S-Y, Kuo C-H, Tsai I-L. Metabolome analysis for investigating host-gut microbiota interactions. Journal of the Formosan Medical Association. 2019;118:S10–S22. https://doi.org/10.1016/j.jfma.2018.09.007

61. Cai J, Zhang L, Jones RA, Correll JB, Hatzakis E, Smith PB, et al. Antioxidant drug tempol promotes functional metabolic changes in the gut microbiota. Journal of Proteome Research. 2016;15(2):563–571. https://doi.org/10.1021/acs.jproteome.5b00957

62. Bervoets L, Ippel JH, Smolinska A, van Best N, Savelkoul PHM, Mommers MAH, et al. Practical and robust NMR-based metabolic phenotyping of gut health in early life. Journal of Proteome Research. 2021;20(11):5079–5087. https://doi.org/10.1021/acs.jproteome.1c00617

63. Cui M, Trimigno A, Aru V, Khakimov B, Engelsen SB. Human faecal 1H NMR metabolomics: evaluation of solvent and sample processing on coverage and reproducibility of signature metabolites. Analytical Chemistry. 2020;92(14):9546–9555. https://doi.org/10.1021/acs.analchem.0c00606

64. Zhu Y, Deng P, Zhong D. Derivatization methods for LC-MS analysis of endogenous compounds. Bioanalysis. 2015;7(19):2557–2581. https://doi.org/10.4155/bio.15.183

65. Lkhagva A, Shen C-C, Leung Y-S, Tai H-C. Comparative study of five different amine-derivatization methods for metabolite analyses by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A. 2020;1610:460536. https://doi.org/10.1016/j.chroma.2019.460536

66. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition. 2018;57:1–24. https://doi.org/10.1007/s00394-017-1445-8

67. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications. 2015;6:6734. https://doi.org/10.1038/ncomms7734

68. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The ISME Journal. 2014;8(6):1323–1335. https://doi.org/10.1038/ismej.2014.14

69. Schroeder BO, Birchenough GMH, Ståhlman M, Arike L, Johansson MEV, Hansson GC, et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host and Microbe. 2018;23(1):27–40.e7. https://doi.org/10.1016/j.chom.2017.11.004

70. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–1286. https://doi.org/10.1038/nature08530

71. Olas B. Probiotics, prebiotics and synbiotics – A promising strategy in prevention and treatment of cardiovascular diseases? International Journal of Molecular Sciences. 2020;21(24):9737. https://doi.org/10.3390/ijms21249737

72. Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR. Nutrition and atherosclerosis. Archives of Medical Research. 2015;46(5):408–426. https://doi.org/10.1016/j.arcmed.2015.05.010

73. Barrington WT, Lusis AJ. Association between the gut microbiome and atherosclerosis. Nature Reviews Cardiology. 2017;14:699–700. https://doi.org/10.1038/nrcardio.2017.169

74. Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome. 2020;8:36. https://doi.org/10.1186/s40168-020-00821-0

75. Nicolas GR, Chang PV. Deciphering the chemical lexicon of host-gut microbiota interactions. Trends in Pharmacological Sciences. 2019;40(6):430–445. https://doi.org/10.1016/j.tips.2019.04.006

76. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology. 2017;19(1):29–41. https://doi.org/10.1111/1462-2920.13589

77. Khan MT, Duncan SH, Stams AJM, van Dijl JM, Flint HJ, Harmsen HJM. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. The ISME Journal. 2012;6(8):1578–1585. https://doi.org/10.1038/ismej.2012.5

78. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters. 2009;294(1):1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.x

79. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, de Angelis M. The controversial role of human gut Lachnospiraceae. Microorganisms. 2020;8(4):573. https://doi.org/10.3390/microorganisms8040573

80. Engels C, Ruscheweyh H-J, Beerenwinkel N, Lacroix C, Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Frontiers in Microbiology. 2016;7:713. https://doi.org/10.3389/fmicb.2016.00713

81. Jose PA, Raj D. Gut microbiota in hypertension. Current Opinion in Nephrology and Hypertension. 2015;24(5):403–409. https://doi.org/10.1097/MNH.0000000000000149

82. Morita N, Umemoto E, Fujita S, Hayashi A, Kikuta J, Kimura I, et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1+cells by bacterial metabolites. Nature. 2019;566:110–114. https://doi.org/10.1038/s41586-019-0884-1

83. Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O'Donnell TA, et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell. 2017;170(1):185–198.e16. https://doi.org/10.1016/j.cell.2017.05.034

84. van Treuren W, Dodd D. Microbial contribution to the human metabolome: implications for health and disease. Annual Review of Pathology: Mechanisms of Disease. 2020;15:345–369. https://doi.org/10.1146/annurev-pathol-020117-043559

85. Zhu Y, Li Q, Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS. 2020;128(5):353–366. https://doi.org/10.1111/apm.13038

86. Tang WHW, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circulation Research. 2015;116(3):448–455. https://doi.org/10.1161/CIRCRESAHA.116.305360

87. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–276. https://doi.org/10.1016/j.cell.2015.02.047

88. Kodentsova VM, Risnik DV. Micronutrients and the gut microbiome: A bidirectional interaction. Medical Alphabet. 2024;(16):40–46. (In Russ.). https://doi.org/10.33667/2078-5631-2024-16-40-46

89. Blagonravova AS, Zhilyaeva TV, Kvashnina DV. Dysbiosis of intestinal microbiota in autism spectrum disorders: new horizons in search for pathogenetic approaches to therapy. Part 2. Gut-brain axis in pathogenesis of autism spectrum disorders. Journal of Microbiology, Epidemiology and Immunobiology. 2021;98(2):221–230. (In Russ.). https://doi.org/10.36233/0372-9311-83

90. Gurevich KG, Nikityuk DB, Nikonov EL, Zaborova VA, Veselova LV, Zolnikova OYu. The role of probiotics and microbiota in digestion, nutrient and hormone metabolism, and hormonal background maintenance. Russian Journal of Preventive Medicine and Public Health. 2018;21(3):45–50. (In Russ.). https://doi.org/10.17116/profmed201821345

91. Dmitrieva A, Kozlova O, Atuchin V, Milentieva I, Vesnina A, Ivanova S, et al. Study of the effect of baicalin from Scutellaria baicalensis on the gastrointestinal tract normoflora and Helicobacter pylori. International Journal of Molecular Sciences. 2023;24(15):11906. https://doi.org/10.3390/ijms241511906

92. Piccioni A, Covino M, Candelli M, Ojetti V, Capacci A, Gasbarrini A, et al. How do diet patterns, single foods, prebiotics and probiotics impact gut microbiota? Microbiology Research. 2023;14(1):390–408. https://doi.org/10.3390/microbiolres14010030

93. Mahasneh SA, Mahasneh AM. Probiotics: A promising role in dental health. Dentistry Journal. 2017;5(4):26. https://doi.org/10.3390/dj5040026

94. Vinelli V, Biscotti P, Martini D, Del Bo’ C, Marino M, Meroño T, et al. Effects of dietary fibers on short-chain fatty acids and gut microbiota composition in healthy adults: A systematic review. Nutrients. 2022;14(13):2559. https://doi.org/10.3390/nu14132559

95. Chen O, Sudakaran S, Blonquist T, Mah E, Durkee S, Bellamine A. Effect of arabinogalactan on the gut microbiome: A randomized, double-blind, placebo-controlled, crossover trial in healthy adults. Nutrition. 2021;90:111273. https://doi.org/10.1016/j.nut.2021.111273

96. Reimer RA, Soto-Vaca A, Nicolucci AC, Mayengbam S, Park H, Madsen KL, et al. Effect of chicory inulin-type fructan-containing snack bars on the human gut microbiota in low dietary fiber consumers in a randomized crossover trial. The American Journal of Clinical Nutrition. 2020;111(6):1286–1296. https://doi.org/10.1093/ajcn/nqaa074

97. Holscher HD, Bauer LL, Gourineni V, Pelkman CL, Fahey GC, Swanson KS. Agave inulin supplementation affects the fecal microbiota of healthy adults participating in a randomized, double-blind, placebo-controlled, crossover trial. The Journal of Nutrition. 2015;145(9):2025–2032. https://doi.org/10.3945/jn.115.217331

98. Sloan TJ, Jalanka J, Major GAD, Krishnasamy S, Pritchard S, Abdelrazig S, et al. A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLoS ONE. 2018;13(7):e0201410. https://doi.org/10.1371/journal.pone.0201410

99. Lecerf J-M, Dépeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. British Journal of Nutrition. 2012;108(10):1847–1858. https://doi.org/10.1017/S0007114511007252

100. Sohail MU, Shabbir MZ, Steiner JM, Ahmad S, Kamran Z, Anwa H, et al. Molecular analysis of the gut microbiome of diabetic rats supplemented with prebiotic, probiotic, and synbiotic foods. International Journal of Diabetes in Developing Countries. 2017;37:419–425. https://doi.org/10.1007/s13410-016-0502-9

101. Arboleya S, Watkins C, Stanton C, Ross RP. Gut bifidobacteria populations in human health and aging. Frontiers in Microbiology. 2016;7:1204. https://doi.org/10.3389/fmicb.2016.01204

102. Wong CB, Odamaki T, Xiao J. Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiology Reviews. 2020;44(3):369–385. https://doi.org/10.1093/femsre/fuaa010

103. Rivière A, Selak M, Lantin D, Leroy F, de Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Frontiers in Microbiology. 2016;7:979. https://doi.org/10.3389/fmicb.2016.00979

104. Kawasaki S, Watanabe M, Fukiya S, Yokota A. Stress responses of bifidobacteria: oxygen and bile acid as the stressors. In: Mattarelli P, Biavati B, Holzapfel WH, Wood BJB, editors. The bifidobacteria and related organisms. Biology, taxonomy, applications. Academic Press; 2018. pp. 131–143. https://doi.org/10.1016/B978-0-12-805060-6.00007-7

105. Dahiya D, Nigam PS. The gut microbiota influenced by the intake of probiotics and functional foods with prebiotics can sustain wellness and alleviate certain ailments like gut-inflammation and colon-cancer. Microorganisms. 2022;10(3):665. https://doi.org/10.3390/microorganisms10030665

106. Wilson B, Eyice Ö, Koumoutsos I, Lomer MC, Irving PM, Lindsay JO, et al. Prebiotic galactooligosaccharide supplementation in adults with ulcerative colitis: exploring the impact on peripheral blood gene expression, gut microbiota, and clinical symptoms. Nutrients. 2021;13(10):3598. https://doi.org/10.3390/nu13103598

107. Du Z, Li J, Li W, Fu H, Ding J, Ren G, et al. Effects of prebiotics on the gut microbiota in vitro associated with functional diarrhea in children. Frontiers in Microbiology. 2023;14:1233840. https://doi.org/10.3389/fmicb.2023.1233840

108. Zou L, Yang Y, Zhan J, Cheng J, Fu Y, Cao Y, et al. Gut microbiota-based discovery of Houttuyniae Herba as a novel prebiotic of Bacteroides thetaiotaomicron with anti-colitis activity. Biomedicine and Pharmacotherapy. 2024;172:116302. https://doi.org/10.1016/j.biopha.2024.116302

109. Wang H, Li H, Li Z, Feng L, Peng L. Evaluation of prebiotic activity of Stellariae Radix polysaccharides and its effects on gut microbiota. Nutrients. 2023;15(22):4843. https://doi.org/10.3390/nu15224843

110. Cardoso BB, Amorim C, Franco-Duarte R, Alves JI, Barbosa SG, Silvério SC, et al. Epilactose as a promising butyrate-promoter prebiotic via microbiota modulation. Life. 2024;14(5):643. https://doi.org/10.3390/life14050643

111. Milentyeva IS, Le VM, Kozlova OV, Velichkovich NS, Fedorova AM, Loseva AI, et al. Secondary metabolites in in vitro cultures of Siberian medicinal plants: Content, antioxidant properties, and antimicrobial characteristics. Foods and Raw Materials. 2021;9(1):153–163. https://doi.org/10.21603/2308-4057-2021-1-153-163

112. Zorraquín I, Sánchez-Hernández E, Ayuda-Durán B, Silva M, González-Paramás AM, Santos-Buelga C, et al. Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. Journal of the Science of Food and Agriculture. 2020;100(10):3789–3802. https://doi.org/10.1002/jsfa.10378

113. Zheng S, Huang K, Zhao C, Xu W, Sheng Y, Luo Y, et al. Procyanidin attenuates weight gain and modifies the gut microbiota in high fat diet induced obese mice. Journal of Functional Foods. 2018;49:362–368. https://doi.org/10.1016/j.jff.2018.09.007

114. Kemperman RA, Gross G, Mondot S, Possemiers S, Marzorati M, van de Wiele T, et al. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Research International. 2013;53(2):659–669. https://doi.org/10.1016/j.foodres.2013.01.034

115. Chen T, Liu AB, Sun S, Ajami NJ, Ross MC, Wang H, et al. Green tea polyphenols modify the gut microbiome in db/db mice as co-abundance groups correlating with the blood glucose lowering effect. Molecular Nutrition and Food Research. 2019;63(8):1801064. https://doi.org/10.1002/mnfr.201801064

116. Zhou J, Tang L, Shen C-L, Wang J-S. Green tea polyphenols boost gut-microbiota-dependent mitochondrial TCA and urea cycles in Sprague-Dawley rats. The Journal of Nutritional Biochemistry. 2020;81:108395. https://doi.org/10.1016/j.jnutbio.2020.108395

117. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2015;64(6):872–883. https://doi.org/10.1136/gutjnl-2014-307142

118. Anhê FF, Nachbar RT, Varin TV, Vilela V, Dudonné S, Pilon G, et al. A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss. Molecular Metabolism. 2017;6(12):1563–1573. https://doi.org/10.1016/j.molmet.2017.10.003

119. Li H, Christman LM, Li R, Gu L. Synergic interactions between polyphenols and gut microbiota in mitigating inflammatory bowel diseases. Food and Function. 2020;11(6):4878–4891. https://doi.org/10.1039/d0fo00713g

120. Choi BS-Y, Varin TV, St-Pierre P, Pilon G, Tremblay A, Marette A. A polyphenol-rich cranberry extract protects against endogenous exposure to persistent organic pollutants during weight loss in mice. Food and Chemical Toxicology. 2020;146:111832. https://doi.org/10.1016/j.fct.2020.111832

121. Jiao X, Wang Y, Lin Y, Lang Y, Li E, Zhang X, et al. Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. The Journal of Nutritional Biochemistry. 2019;64:88–100. https://doi.org/10.1016/j.jnutbio.2018.07.008

122. Rodríguez-Daza M-C, Roquim M, Dudonné S, Pilon G, Levy E, Marette A, et al. Berry polyphenols and fibers modulate distinct microbial metabolic functions and gut microbiota enterotype-like clustering in obese mice. Frontiers in Microbiology. 2020;11:2032. https://doi.org/10.3389/fmicb.2020.02032

123. Lee S, Keirsey KI, Kirkland R, Grunewald ZI, Fischer JG, de La Serre CB. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. The Journal of Nutrition. 2018;148(2):209–219. https://doi.org/10.1093/jn/nxx027

124. Lima ACD, Cecatti C, Fidélix MP, Adorno MAT, Sakamoto IK, Cesar TB, et al. Effect of daily consumption of orange juice on the levels of blood glucose, lipids, and gut microbiota metabolites: controlled clinical trials. Journal of Medicinal Food. 2019;22(2):202–210. https://doi.org/10.1089/jmf.2018.0080

125. Brasili E, Hassimotto NMA, del Chierico F, Marini F, Quagliariello A, Sciubba F, et al. Daily consumption of orange juice from Citrus sinensis L. Osbeck cv. Cara Cara and cv. Bahia differently affects gut microbiota profiling as unveiled by an integrated Meta-Omics approach. Journal of Agricultural and Food Chemistry. 2019;67(5):1381–1391. https://doi.org/10.1021/acs.jafc.8b05408

126. Fidélix M, Milenkovic D, Sivieri K, Cesar T. Microbiota modulation and effects on metabolic biomarkers by orange juice: A controlled clinical trial. Food and Function. 2020;11(2):1599–1610. https://doi.org/10.1039/c9fo02623a

127. Wang P, Gao J, Ke W, Wang J, Li D, Liu R, et al. Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radical Biology and Medicine. 2020;156:83–98. https://doi.org/10.1016/j.freeradbiomed.2020.04.013

128. Guo C, Han L, Li M, Yu L. Seabuckthorn (Hippophaë rhamnoides) freeze-dried powder protects against high-fat diet-induced obesity, lipid metabolism disorders by modulating the gut microbiota of mice. Nutrients. 2020;12(1):265. https://doi.org/10.3390/nu12010265

129. Shi X, Zhou X, Chu X, Wang J, Xie B, Ge J, et al. Allicin improves metabolism in high-fat diet-induced obese mice by modulating the gut microbiota. Nutrients. 2019;11(12):2909. https://doi.org/10.3390/nu11122909

130. Tamura M, Hoshi C, Kobori M, Takahashi S, Tomita J, Nishimura M, et al. Quercetin metabolism by fecal microbiota from healthy elderly human subjects. PLoS ONE. 2017;12(11):e0188271. https://doi.org/10.1371/journal.pone.0188271

131. Zhang Z, Chen Y, Xiang L, Wang Z, Xiao GG, Hu J. Effect of curcumin on the diversity of gut microbiota in ovariectomized rats. Nutrients. 2017;9(10):1146. https://doi.org/10.3390/nu9101146

132. Al-Saud NBS. Impact of curcumin treatment on diabetic albino rats. Saudi Journal of Biological Sciences. 2020;27(2):689–694. https://doi.org/10.1016/j.sjbs.2019.11.037

133. Truzzi F, Tibaldi C, Zhang Y, Dinelli G, D’Amen E. An overview on dietary polyphenols and their biopharmaceutical classification system (BCS). International Journal of Molecular Sciences. 2021;22(11):5514. https://doi.org/10.3390/ijms22115514

134. Fong SYK, Liu M, Wei H, Löbenberg R, Kanfer I, Lee VHL, et al. Establishing the pharmaceutical quality of Chinese herbal medicine: A provisional BCS classification. Molecular Pharmaceutics. 2013;10(5):1623–1643. https://doi.org/10.1021/mp300502m

135. Madaan K, Lather V, Pandita D. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Delivery. 2016;23(1):254–262. https://doi.org/10.3109/10717544.2014.910564

136. Waldmann S, Almukainzi M, Bou-Chacra NA, Amidon GL, Lee B-J, Feng J, et al. Provisional biopharmaceutical classification of some common herbs used in Western medicine. Molecular Pharmaceutics. 2012;9(4):815–822. https://doi.org/10.1021/mp200162b

137. Zhang J, Liu D, Huang Y, Gao Y, Qian S. Biopharmaceutics classification and intestinal absorption study of apigenin. International Journal of Pharmaceutics. 2012;436(1–2):311–317. https://doi.org/10.1016/j.ijpharm.2012.07.002

138. Zhou Z, Li W, Sun W-J, Lu T, Tong HHY, Sun CC, et al. Resveratrol cocrystals with enhanced solubility and tabletability. International Journal of Pharmaceutics. 2016;509(1–2):391–399. https://doi.org/10.1016/j.ijpharm.2016.06.006

139. John MK, Xie H, Bell EC, Liang D. Development and pharmacokinetic evaluation of a curcumin co-solvent formulation. Anticancer Research. 2013;33(10):4285–4291.

140. Francioso A, Mastromarino P, Masci A, d'Erme M, Mosca L. Chemistry, stability and bioavailability of resveratrol. Medicinal Chemistry. 2014;10(3):237–245. https://doi.org/10.2174/15734064113096660053

141. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition. 2005;81(1):230S–242S. https://doi.org/10.1093/ajcn/81.1.230S

142. di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and human health: The role of bioavailability. Nutrients. 2021;13(1):273. https://doi.org/10.3390/nu13010273

143. Annunziata G, Jiménez-García M, Capó X, Moranta D, Arnone A, Tenore GC, et al. Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food and Chemical Toxicology. 2020;139:111248. https://doi.org/10.1016/j.fct.2020.111248

144. Hu B, Liu X, Zhang C, Zeng X. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. Journal of Food and Drug Analysis. 2017;25(1):3–15. https://doi.org/10.1016/j.jfda.2016.11.004

145. Ozkan G, Franco P, de Marco I, Xiao J, Capanoglu E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry. 2019;272:494–506. https://doi.org/10.1016/j.foodchem.2018.07.205

146. Zhang Z, Miao W, Ji H, Lin Q, Li X, Sang S, et al. Interaction of zein/HP-β-CD nanoparticles with digestive enzymes: Enhancing curcumin bioavailability. Food Chemistry. 2024;460:140792. https://doi.org/10.1016/j.foodchem.2024.140792

147. Rashidinejad A, Boostani S, Babazadeh A, Rehman A, Rezaei A, Akbari-Alavijeh S, et al. Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Research International. 2021;142:110186. https://doi.org/10.1016/j.foodres.2021.110186

148. Florowska A, Krygier K, Florowski T, Dłużewska E. Prebiotics as functional food ingredients preventing diet-related diseases. Food and Function. 2016;7(5):2147–2155. https://doi.org/10.1039/c5fo01459j

149. Irwin SV, Fisher P, Graham E, Malek A, Robidoux A. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. PLoS ONE. 2017;12(10):e0186629. https://doi.org/10.1371/journal.pone.0186629

150. Zahran SA, Ali-Tammam M, Hashem AM, Aziz RK, Ali AE. Azoreductase activity of dye-decolorizing bacteria isolated from the human gut microbiota. Scientific Reports. 2019;9:5508. https://doi.org/10.1038/s41598-019-41894-8

151. Zhou X, Qiao K, Wu H, Zhang Y. The impact of food additives on the abundance and composition of gut microbiota. Molecules. 2023;28(2):631. https://doi.org/10.3390/molecules28020631

152. Gerasimidis K, Bryden K, Chen X, Papachristou E, Verney A, Roig M, et al. The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. European Journal of Nutrition. 2020;59:3213–3230. https://doi.org/10.1007/s00394-019-02161-8

153. Newman JC, Verdin E. Ketone bodies as signaling metabolites. Trends in Endocrinology and Metabolism. 2014;25(1):42–52. https://doi.org/10.1016/j.tem.2013.09.002

154. Piper MDW, Bartke A. Diet and aging. Cell Metabolism. 2008;8(2):99–104. https://doi.org/10.1016/j.cmet.2008.06.012

155. Newman JC, Covarrubias AJ, Zhao M, Yu X, Gut P, Ng C-P, et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metabolism. 2017;26(3):547–557.e8. https://doi.org/10.1016/j.cmet.2017.08.004

156. Roberts MN, Wallace MA, Tomilov AA, Zhou Z, Marcotte GR, Tran D, et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metabolism. 2017;26(3):539–546.e5. https://doi.org/10.1016/j.cmet.2017.08.005

157. Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: Separating fact from fiction. Science. 2021;374(6570):eabe7365. https://doi.org/10.1126/science.abe7365

158. Longo VD, di Tano M, Mattson MP, Guidi N. Intermittent and periodic fasting, longevity and disease. Nature Aging. 2021;1:47–59. https://doi.org/10.1038/s43587-020-00013-3

159. Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metabolism. 2015;22(1):86–99. https://doi.org/10.1016/j.cmet.2015.05.012

160. Zhang D, Li H, Li Y, Qu L. Gut rest strategy and trophic feeding in the acute phase of critical illness with acute gastrointestinal injury. Nutrition Research Reviews. 2019;32(2):176–182. https://doi.org/10.1017/S0954422419000027

161. Mohr AE, Gumpricht E, Sears DD, Sweazea KL. Recent advances and health implications of dietary fasting regimens on the gut microbiome. American Journal of Physiology – Gastrointestinal and Liver Physiology. 2021;320(5):G847–G863. https://doi.org/10.1152/ajpgi.00475.2020

162. Beli E, Yan Y, Moldovan L, Vieira CP, Gao R, Duan Y, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes. 2018;67(9):1867–1879. https://doi.org/10.2337/db18-0158

163. Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metabolism. 2018;27(6):1222–1235.e6. https://doi.org/10.1016/j.cmet.2018.05.006

164. Zheng X, Zhou K, Zhang Y, Han X, Zhao A, Liu J, et al. Food withdrawal alters the gut microbiota and metabolome in mice. The FASEB Journal. 2018;32(9):4878–4888. https://doi.org/10.1096/fj.201700614R

165. Li L, Su Y, Li F, Wang Y, Ma Z, Li Z, et al. The effects of daily fasting hours on shaping gut microbiota in mice. BMC Microbiology. 2020;20:65. https://doi.org/10.1186/s12866-020-01754-2

166. Liu Z, Dai X, Zhang H, Shi R, Hui Y, Jin X, et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nature Communications. 2020;11:855. https://doi.org/10.1038/s41467-020-14676-4

167. Özkul C, Yalınay M, Karakan T. Islamic fasting leads to an increased abundance of Akkermansia muciniphila and Bacteroides fragilis group: A preliminary study on intermittent fasting. Turkish Journal of Gastroenterology. 2019;30(12):1030–1035. https://doi.org/10.5152/tjg.2019.19185

168. Ozkul C, Yalinay M, Karakan T. Structural changes in gut microbiome after Ramadan fasting: A pilot study. Beneficial Microbes. 2020;11(3):227–233. https://doi.org/10.3920/BM2019.0039

169. Zeb F, Wu X, Chen L, Fatima S, Haq I, Chen A, et al. Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males. British Journal of Nutrition. 2020;123(11):1216–1226. https://doi.org/10.1017/S0007114519003428

170. Smith P, Willemsen D, Popkes M, Metge F, Gandiwa E, Reichard M, et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife. 2017;6:e27014. https://doi.org/10.7554/eLife.27014

171. Han B, Sivaramakrishnan P, Lin C-CJ, Neve IAA, He J, Tay LWR, et al. Microbial genetic composition tunes host longevity. Cell. 2017;169(7):1249–1262.e13. https://doi.org/10.1016/j.cell.2017.05.036

172. Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell. 2015;161(1):106–118. https://doi.org/10.1016/j.cell.2015.02.020

173. Debebe T, Biagi E, Soverini M, Holtze S, Hildebrandt TB, Birkemeyer C, et al. Unraveling the gut microbiome of the long-lived naked mole-rat. Scientific Reports. 2017;7:9590. https://doi.org/10.1038/s41598-017-10287-0

174. Minekus M, Marteau P, Havenaar R, Huis in't Veld JHJ. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to Laboratory Animals. 1995;23(2):197–209. https://doi.org/10.1177/026119299502300205

175. Babich O, Larina V, Krol O, Ulrikh E, Sukhikh S, Gureev MA, et al. In vitro study of biological activity of Tanacetum vulgare extracts. Pharmaceutics. 2023;15(2):616. https://doi.org/10.3390/pharmaceutics15020616

176. Chikindas ML, Mazanko MS, Lukyanov AD, Prazdnova EV, Chistyakov VA. Method for modeling chicken microbiota in an artificial caecum. Patent RU 2773094C1. 2022.

177. Donskoy DYu, Lukyanov AD, Filipović V, Asten TB. Mathematical model of the pH control system in an in vitro model of the gastrointestinal tract of poultry. Advanced Engineering Research (Rostov-on-Don). 2023;23(1):95–106. https://doi.org/10.23947/2687-1653-2023-23-1-95-106

178. Savoie L. Digestion and absorption of food: usefulness and limitations of in vitro models. Canadian Journal of Physiology and Pharmacology. 1994;72(4):407–414. https://doi.org/10.1139/y94-060

179. Langland AC. Digestive enzyme activities in pigs and poultry. In: Fuller MF, editor. In vitro digestion for pigs and poultry. Wallingford: CAB International; 1991. pp. 3–18.

180. Minekus M, Smeets-Peeters M, Bernalier A, Marol-Bonnin S, Havenaar R, Marteau P, et al. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Applied Microbiology and Biotechnology. 1999;53:108–114. https://doi.org/10.1007/s002530051622

181. Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, et al. The impact of food bioactives on health. In vitro and ex vivo models. Cham: Springer; 2015. 338 p. https://doi.org/10.1007/978-3-319-16104-4

182. Minekus M. The TNO Gastro-Intestinal Model (TIM). In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, et al., editors. The impact of food bioactives on health. In vitro and ex vivo models. Cham: Springer; 2015. pp. 37–46. https://doi.org/10.1007/978-3-319-16104-4_5

183. Wickham MJS, Faulks RM, Mann J, Mandalari G. The design, operation, and application of a dynamic gastric model. Dissolution Technologies. 2012;19:15–22. https://doi.org/10.14227/DT190312P15

184. Thuenemann EC, Mandalari G, Rich GT, Faulks MR. Dynamic Gastric Model (DGM) In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, et al., editors. The impact of food bioactives on health. In vitro and ex vivo models. Cham: Springer; 2015. pp. 47–59. https://doi.org/10.1007/978-3-319-16104-4_6

185. Kong F, Singh RP. A human gastric simulator (HGS) to study food digestion in human stomach. Journal of Food Science. 2010;75(9):E627–E635. https://doi.org/10.1111/j.1750-3841.2010.01856.x

186. Ferrua MJ, Singh RP. Human Gastric Simulator (riddet model). In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, et al., editors. The impact of food bioactives on health. In vitro and ex vivo models. Cham: Springer; 2015. pp. 61–71. https://doi.org/10.1007/978-3-319-16104-4_7

187. Ménard O, Cattenoz T, Guillemin H, Souchon I, Deglaire A, Dupont D, et al. Validation of a new in vitro dynamic system to simulate infant digestion. Food Chemistry. 2014;145:1039–1045. https://doi.org/10.1016/j.foodchem.2013.09.036

188. Ménard O, Picque D, Dupont D. The DIDGI® system. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, et al., editors. The impact of food bioactives on health. In vitro and ex vivo models. Cham: Springer; 2015. pp. 73–81. https://doi.org/10.1007/978-3-319-16104-4_8

189. Peeters L, Beirnaert C, van der Auwera A, Bijttebier S, de Bruyne T, Laukens K, et al. Revelation of the metabolic pathway of hederacoside C using an innovative data analysis strategy for dynamic multiclass biotransformation experiments. Journal of Chromatography A. 2019;1595:240–247. https://doi.org/10.1016/j.chroma.2019.02.055

190. Breynaert A, Bosscher D, Kahnt A, Claeys M, Cos P, Pieters L, et al. Development and validation of an in vitro experimental gastrointestinal dialysis model with colon phase to study the availability and colonic metabolisation of polyphenolic compounds. Planta Medica. 2015;81(12/13):1075–1083. https://doi.org/10.1055/s-0035-1546154

191. Gumienna M, Lasik M, Czarnecki Z. Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitro digestion. International Journal of Food Sciences and Nutrition. 2011;62(3):226–233. https://doi.org/10.3109/09637486.2010.532115


Login or Create
* Forgot password?