Vegetable oils are susceptible to oxidation during storage, which is a serious problem for shelf-life and food safety. The article describes the antioxidant properties of supercritical extracts from brown algae (Undaria pinnatifida and Costaria costata), Russian Far East. It also explains their prospects as stabilizers that preserve the quality and safety of vegetable oils by affecting the kinetics of oxidation and hydrolysis. The study featured supercritical extracts of marine brown algae Undaria pinnatifida and Costaria costata from Russian Far East. The methods involved spectrophotometry and high-performance liquid chromatography. Supercritical extracts of marine brown algae proved to be reliable sources of bioactive substances, e.g., phenolic compounds, carotenoids, and mannitol. They also possessed antioxidant properties in terms of antiradical activity, hydroxyl ion binding, superoxide radical absorption, and Fe+2 chelating. The experiments revealed nine phenolic compounds responsible for antioxidant properties. The supercritical extract of Costaria costata demonstrated a greater antioxidant effect on lipid oxidation in vegetable oils than Undaria pinnatifida. Both algae proved effective in stabilizing hydrolysis and were able to increase the shelf-life of soy and sunflower oils by three months. Supercritical extracts of Undaria pinnatifida and Costaria costata served as antioxidants to stabilize lipid oxidation in refined and unrefined soy and sunflower oils. The research revealed high approximation coefficients for regression equations describing the patterns of changes in the peroxide and acid numbers of vegetable oils stabilized with supercritical extracts of these marine brown algae.
Brown algae, Undaria pinnatifida, Costaria costata, supercritical extracts, antioxidants, vegetable oils
1. Machado M, Rodriguez-Alcalá LM, Gomes AM, Pintado M. Vegetable oils oxidation: mechanisms, consequences and protective strategies. Food Reviews International. 2023;39(7):4180–4197. https://doi.org/10.1080/87559129.2022.2026378
2. Siddiq A, Ambreen G, Hussain K, Baig SG. Oxidative stress and lipid per-oxidation with repeatedly heated mix vegetable oils in different doses in comparison with single time heated vegetable oils. Pakistan Journal of Pharmaceutical Sciences. 2019;32(5):2099–2105.
3. Nguyen KA, Hennebelle M, van Duynhoven JPM, Dubbelboer A, Boerkamp VJP, Wierenga PA. Mechanistic kinetic modelling of lipid oxidation in vegetable oils to estimate shelf-life. Food Chemistry. 2024;433:137266. https://doi.org/10.1016/j.foodchem.2023.137266
4. Chen X-W, Li X-X, Hu Q-H, Sun S-D, Wan Z-L. Multifactorial revealing the association between components and lipid oxidation of edible vegetable oils in bulk and emulsion systems. LWT. 2023;183:114909. https://doi.org/10.1016/j.lwt.2023.114909
5. Machado SA, Da Rós PCM, de Castro HF, Giordani DS. Hydrolysis of vegetable and microbial oils catalyzed by a solid preparation of castor bean lipase. Biocatalysis and Agricultural Biotechnology. 2021;37:102188. https://doi.org/10.1016/j.bcab.2021.102188
6. Jaarin K, Kamisah Y. Lipid peroxidation. In: Catala A, editor. Repeatedly Heated Vegetable Oils and Lipid Peroxidation. Argentina: Universidad Nacional de La Plata; 2012. pp.211–228. https://doi.org/10.5772/46076
7. Zubova EV, Shamina EI. The effect of antioxidants on quality and storage vegetable oils. Vestnik of Nizhny Novgorod State Agrotechnological University. 2017;(1):42–46 (In Russ.). https://www.elibrary.ru/YSGUZZ
8. Averyanova EV, Shkolnikova MN, Chugunova OV. Antioxidant properties of triterpenoids in fat-containing products. Food Processing: Techniques and Technology. 2022;52(2):233–243. (In Russ.). https://doi.org/10.21603/2074-9414-2022-2-2358; https://www.elibrary.ru/OZYTYK
9. Nechaev AP, Samoylov AV, Bessonov VV, Nikolaeva YuV, Tarasova VV, Pilipenko OV. Influence of antioxidants in native and micelled forms on the shelf life of the emulsion fat product. Problems of Nutrition. 2020;89(5):101–109. (In Russ.). https://doi.org/10.24411/0042-8833-2020-10070; https://www.elibrary.ru/WWGVZA
10. Timakova RT. Study of the effect of medicinal and technical raw materials of antioxidant orientation on the storage capacity of sunflower oil. XXI Century: Resumes of the Past and Challenges of the Present Plus. 2021;10(10):161–164. (In Russ.). https://doi.org/10.46548/21vek-2021-1053-0029; https://www.elibrary.ru/TTQQNA
11. Oleynikov VV. Antioxidant and antimicrobial properties of oregano extract (Origani vulgaris herba L.). Foods and Raw Materials. 2020;8(1):84–90. http://doi.org/10.21603/2308-4057-2020-1-84-90; https://www.elibrary.ru/WORGNQ
12. Wang W, Xiong P, Zhang H, Zhu Q, Liao C, Jiang G. Analysis, occurrence, toxicity and environmental health risks of synthetic phenolic antioxidants: A review. Environmental Research. 2021;201:111531. https://doi.org/10.1016/j.envres.2021.111531
13. Righi F, Pitino R, Manuelian CL, Simoni M, Quarantelli A, De Marchi M, Tsiplakou E. Plant Feed Additives as Natural Alternatives to the Use of Synthetic Antioxidant Vitamins on Poultry Performances, Health, and Oxidative Status: A Review of the Literature in the Last 20 Years. Antioxidants. 2021;10(5):659. https://doi.org/10.3390/antiox10050659
14. Olajide TM, Rahman MdRT, Lou Z, Qi J. Natural or Synthetic Antioxidants in Foods. In: Goyal MR, Suleria HAR, editors. Human Health Benefits of Plant Bioactive Compounds. New York: Apple Academic Press; 2019. pp. 55–65. https://doi.org/10.1201/9780429457913
15. Uwineza PA, Waśkiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules. 2020;25(17):3847. https://doihttps://doi.org/10.3390/molecules25173847
16. Gallego R, Bueno M, Herrero M. Sub-and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae–An update. TrAC Trends in Analytical Chemistry. 2019;116:198–213. https://doi.org/10.1016/j.trac.2019.04.030
17. Urbonavičienė D, Bobinas Č, Bobinaitė R, Raudonė L, Trumbeckaitė S, Viškelis J, et al. Composition and antioxidant activity, supercritical carbon dioxide extraction extracts, and residue after extraction of biologically active compounds from freeze-dried tomato matrix. Processes. 2021;9(3):467. https://doi.org/10.3390/pr9030467
18. Pimentel-Moral S, Borrás-Linares I, Lozano-Sánchez J, Arráez-Román D, Martínez-Férez A, Segura-Carretero A. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. The Journal of Supercritical Fluids. 2019;147:213–221. https://doi.org/10.1016/j.supflu.2018.11.005
19. Ostolski M, Adamczak M, Brzozowsk B, Wiczkowski W. Antioxidant activity and chemical characteristics of supercritical CO2 and water extracts from willow and poplar. Molecules. 2021;26(3):545. https://doi.org/10.3390/molecules26030545
20. Jelani ANA, Azlan A, Khoo HE, Razman MR. Fatty acid profile and antioxidant properties of oils extracted from dabai pulp using supercritical carbon dioxide extraction. International Food Research Journal. 2019; 26(5):1587–1598.
21. Gong T, Liu S, Wang H, Zhang M, Supercritical CO2 fluid extraction, physicochemical properties, antioxidant activities and hypoglycemic activity of polysaccharides derived from fallen Ginkgo leaves. Food Bioscience. 2021;42:101153. https://doi.org/10.1016/j.fbio.2021.101153
22. Muangrat R, Jirarattanarangsri W. Physicochemical properties and antioxidant activity of oil extracted from Assam tea seeds (Camellia sinensis var. assamica) by supercritical CO2 extraction. Journal of food processing and preservation. 2020;44(3): e14364. http://dx.doi.org/10.1111/jfpp.14364
23. Silva A, Rodrigues C, Garcia-Oliveira P, Lourenço-Lopes C, Silva SA, Garcia-Perez P, et al. Screening of bioactive properties in brown algae from the northwest iberian peninsula. Foods. 2021;10(8):1915. https://doi.org/10.3390/foods10081915
24. Tabakaev AV, Tabakaeva OV, Piekoszewski W, Kalenik TK, Poznyakovsky VM. Antioxidant properties of edible sea weed from the Northern Coast of the Sea of Japan. Foods and Raw Materials. 2021;9(2):262–270. https://doi. org/10.21603/2308-4057-2021-2-262-270
25. Rajauria G. In-vitro antioxidant properties of lipophilic antioxidant compounds from 3 brown seaweed. Antioxidants. 2019;8(12):596. https://doi.org/10.3390/antiox8120596
26. Aminina NM, Karaulova EP, Vishnevskaya TI, Yakush EV, Kim YK, Nam KH, et al. Characteristics of polyphenolic content in brown algae of the Pacific Coast of Russia. Molecules. 2020;25(17):3909. https://doi.org/10.3390/molecules25173909
27. Remya RR, Samrot AV, Kumar SS, Mohanavel V, Karthick A, Chinnaiyan VK, et al. Bioactive potential of brown algae. Adsorption Science and Technology. 2022;1–13. https://doi.org/10.1155/2022/9104835
28. Alloyarova YuV, Kolotova DS, Derkach SR. Nutritional and therapeutic potential of functional components of brown seaweed: A review. Foods and Raw Materials. 2024;12(2):398–419. https://doi.org/10.21603/ 2308-4057-2024-2-616
29. Sapozhnikov DI. Pigments of plastids of green plants and methods of their research, Moscow: Science; 1964. 129 p. (In Russ.).
30. Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology. 2004;26(2):211–219.
31. Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 1989;28:1057–1060. https://doi.org/10.1016/0031-9422(89)80182-7
32. Ruch RJ, Cheng, S-J, Klaunig JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis. 1989;10:1003–1008. https://doi.org/10.1093/carcin/10.6.1003
33. Patel DS, Shah PB, Managoli NB. Evaluation of in-vitro antioxidant and free radical scavenging activities of Withania somnifera and Aloe vera. Asian Journal of Pharmacy and Technology. 2012;2(4):143–147.
34. Tabakaeva OV, Tabakaev AV. Supercritical extract from the Japanese sea brown algae Undaria pinnatifida as a source of bioactive compounds. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023; 13(3):416–424. (In Russ.). https://doi.org/10.21285/2227-2925-2023-13-3-416-424; https://www.elibrary.ru/JRWASG
35. Lee CH, Park YN, Lee SG. Analysis and comparison of bioactive compounds and total antioxidant capabilities of Korean brown algae. Korean Journal of Food Science and Technology. 2020;52(1):54–59. https://doi.org/10.9721/KJFST.2020.52.1.54
36. Naveen J, Baskaran R, Baskaran V. Profiling of bioactives and in vitro evaluation of antioxidant and antidiabetic property of polyphenols of marine algae Padina tetrastromatica. Algal Research. 2021;55:102250. https://doi.org/10.1016/j.algal.2021.102250
37. Hodhodi A, Babakhani A, Rostamzad H. Effect of different extraction conditions on phlorotannin content and antioxidant activity of extract from brown algae (Sargassum angustifolium). Journal of Food Processing and Preservation. 2022;46(3):e16307. https://doi.org/10.1111/jfpp.16307
38. Heffernan N, Brunton N P, FitzGerald RJ, Smyth TJ. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Marine Drugs. 2015;13(1),509–528. https://doi.org/10.3390/md13010509
39. Agregán R, Munekata PES, Franco D, Dominguez R, Carballo J, Lorenzo JM. Phenolic compounds from three brown seaweed species using LC-DAD–ESI-MS/MS. Food Research International. 2017;99:979–985. https://doi.org/10.1016/j.foodres.2017.03.043
40. Zolotariova YeK, Mokrosnop VM, Stepanov SS. Polyphenol compounds of macroscopic and microscopic algae. International Journal on Algae. 2019;21(1):5–24. https://doihttps://doi.org/10.1615/InterJAlgae.v21.i1.10
41. Sanger G, Wonggo D, Montolalu LADY, Dotulong V. Pigments constituents, phenolic content and antioxidant activity of brown seaweed Sargassum sp. Conference Series: Earth and Environmental Science. 2022;1033(1):012057. https://doi.https://doi.org/10.1088/1755-1315/1033/1/012057
42. Tabakaeva OV, Tabakaev AV. Carotenoid profile and antiradical properties of brown seaweed Sargassum miyabei extracts. Chemistry of Natural Compounds. 2019;55:364–366. https://doi.org/10.1007/s10600-019-02692-w
43. Fomenko SE, Kushnerova NF, Sprygin VG, Drugova ES, Lesnikova LN, Merzlyakov VYu, et al. Lipid composition, content of polyphenols, and antiradical activity in some representatives of marine algae. Russian Journal of Plant Physiology. 2019;66:942–949. https://doi.org/10.1134/S1021443719050054
44. Balasubramaniam V, June Chelyn L, Vimala S, Mohd Fairulnizal MN, Brownlee IA, Amin I. Carotenoid composition and antioxidant potential of Eucheuma denticulatum, Sargassum polycystum and Caulerpa lentillifera. Heliyon. 2020;6(8):e04654. https://doi.org/10.1016/j.heliyon.2020.e04654
45. Gómez I, Huovinen P. Brown algal phlorotannins: an overview of their functional roles. In: Gómez I, Huovinen P, editors. Antarctic seaweeds: Diversity, adaptation and ecosystem services. Cham: Springer; 2020. pp. 365–388. https://doi.org/10.1007/978-3-030-39448-6_18
46. Ummat V, Tiwari BK, Jaiswal AK, Condon K, Garcia-VaqueroM, O`Doherty J. Optimisation of ultrasound frequency, extraction time and solvent for the recovery of polyphenols, phlorotannins and associated antioxidant activity from brown seaweeds. Marine Drugs. 2020;18(5):250. https://doi.org/10.3390/md18050250
47. Zheng H, Zhao Y, Guo L. A bioactive substance derived from brown seaweeds: Phlorotannins. Marine Drugs. 2022;20(12):742. https://doi.org/10.3390/md20120742
48. Farvin KHS, Surendraraj A, Al-Ghunaim A, Al-Yamani F. Chemical profile and antioxidant activities of 26 selected species of seaweeds from Kuwait coast. Journal of Applied Phycology. 2019;31:2653–2668. https://doi.org/10.1007/s10811-019-1739-8
49. Gopidas SK, Subramani N. In vitro antioxidant and cytotoxic properties of fucoidan from three Indian brown seaweeds. Asian Journal of Pharmaceutical and Clinical Research. 2019;12(9):99–105. http://dx.doi.org/10.22159/ajpcr.2019.v12i9.34164
50. Koh HSA, Lu J, Zhou W. Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand. Carbohydrate polymers. 2019;212:178–185. https://doi.org/10.1016/j.carbpol.2019.02.040
51. Swaminathan1 R, Syed Ali1 M, AnuradhaV, Abinaya R, Ananthalakshmi JS, Yogananth N. Antioxidant potential of fucose isolated from the marine macroalgae padina gymnospora. Bioscience Biotechnology Research Communications. 2021;14(3):1302–1308. http://dx.doi.org/10.21786/bbrc/14.3.59
52. Kalenik TK, Darwish F, Alradzhab M, Razgonova MP, Senotrusova TA, Motkina EV. Influence of CO2 extracts of mint (Mentha piperita L.) And clove (Syzygium aromaticum L.) On the oxidative stability of soybean oil. Bulletin of Kamchatka State Technical University.2021;55:29–40. (In Russ.). https://doi.org/10.17217/2079-0333-2021-55-29-40; https://www.elibrary.ru/BNATOY
53. Čižmek L, Kralj MB, Čož-Rakovac R, Mazur DM, Ul’yanovskii NV, Likon M, et al. Supercritical Carbon Dioxide Extraction of Four Medicinal Mediterranean Plants: Investigation of Chemical Composition and Antioxidant Activity. Molecules. 2021; 26(18):5697. https://doi.org/10.3390/molecules26185697
54. Buelvas-Puello LM, Franco-Arnedo G, Martínez-Correa HA, Ballesteros-Vivas D, del Sánchez-Camargo AP, Miranda-Lasprilla D, et al. Supercritical Fluid Extraction of Phenolic Compounds from Mango (Mangifera indica L.) Seed Kernels and Their Application as an Antioxidant in an Edible Oil. Molecules. 2021;26(24):7516. https://doi.org/10.3390/molecules26247516
55. del Sánchez-Camargo AP, L-F Gutiérrez, Vargas SM, HA Martinez-Correa, Parada-Alfonso F, Narváez-Cuenca C-E. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. The Journal of Supercritical Fluids. 2019;152:104574. http://dx.doi.org/10.1016/j.supflu.2019.104574
56. Rebey IB, Bourgou S, Detry P, Wannes WA, Kenny T, Ksouri R, et al. Green Extraction of Fennel and Anise Edible Oils Using Bio-Based Solvent and Supercritical Fluid: Assessment of Chemical Composition, Antioxidant Property, and Oxidative Stability. Food and Bioprocess Technology. 2019;12:1798–1807. https://doi.org/10.1007/s11947-019-02341-8
57. Blasi F, Cossignani L. An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. Processes. 2020;8(8):956. https://doi.org/10.3390/pr8080956