Artificial intelligence (AI) is becoming an integral part of various scientific disciplines, industries, and everyday life. AI studies cover quite a number of scientific fields, and the topic needs an integrated and convergent approach to address its multifaceted challenges. This paper provides an extensive survey of existing approaches to define and interpret the AI concept. The research objective was to identify the invariant characteristics of AI that underscore its interdisciplinary nature. The article categorizes the primary drivers, technologies, and key research models that fuel the advancement of AI, which possesses a unique capability to leverage knowledge, acquire additional insights, and attain human-like intellectual performance by analyzing expressions and methods of human cognition. The emulation of human intellectual activity and inherent propensity for continual evolution and adaptability both unlock novel research prospects and complicate the understanding of these processes. Algorithms, big data processing, and natural language processing are crucial for advancing the AI learning technologies. A comprehensive analysis of the existing linguistic research revealed an opportunity to unify various research approaches within this realm, focusing on pivotal tasks, e.g., text data mining, information retrieval, knowledge extraction, classification, abstracting, etc. AI studies make it possible to comprehend its cognitive potential applications across diverse domains of science, industry, and daily life.
artificial intelligence, cognitive science, interdisciplinary language research, convergent approach, artificial intelligence control, artificial sociality, intellectual analysis
1. Duan L., Xu L. D. Business intelligence for enterprise systems: a survey. IEEE Transactions on Industrial Informatics, 2012, 8(3): 679-687. http://dx.doi.org/10.1109/TII.2012.2188804
2. Rezaev A. V., Starikov V. S., Tregubova N. D. Sociology in the age of ‘artificial sociality’: search of new bases. Sotsiologicheskie issledovaniya, 2020, (2): 3-12. (In Russ.) https://doi.org/10.31857/S013216250008489-0
3. Hui Y. On the limit of artificial intelligence. Philosophy Today, 2021, 65(2): 339-357. https://doi.org/10.5840/philtoday202149392
4. Raikov A. N. Weak vs strong artificial intelligence. Informatizatsiia i sviaz, 2020, (1): 81-88. (In Russ.) https://doi.org/10.34219/2078-8320-2020-11-1-81-88
5. Ng G. W., Leung W. C. Strong artificial intelligence and consciousness. Journal of Artificial Intelligence and Consciousness, 2020, 07(01): 63-72. https://doi.org/10.1142/S2705078520300042
6. Leshkevich T. G. The limits of artificial intelligence in the optics of academic discourse. Interdisciplinarity in the modern humanities and social sciences-2018: Proc. Third Intern. Sci. Conf., Rostov-on-Don, 20-22 Sep 2018. Rostov-on-Don-Taganrog: SFedU, 2018, vol. 2, pt. 2(2), 135-142. (In Russ. https://www.elibrary.ru/mckktr
7. Provornykh I. A. Is it possible for artificial intelligence to have a mind. Innovative discourse on the development of modern science and technology: Proc. III Intern. Sci.-Prac. Conf., Petrozavodsk, 23 Dec 2021. Petrozavodsk: Novaia Nauka, 2021, 224-227. (In Russ.) https://www.elibrary.ru/pdmqnf
8. Kaplan A., Haenlein M. Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 2020, 63(1): 37-50. https://doi.org/10.1016/j.bushor.2019.09.003
9. Kostina A. V. Digital society: man, culture, nature in the horizon of singularity. Znanie. Ponimanie. Umenie, 2020, (4): 15-33. (In Russ.). https://www.elibrary.ru/bmegvr
10. Jiang Y., Li X., Luo H., Yin S., Kaynak O. Quo vadis artificial intelligence? Discover Artificial Intelligence, 2022, 2(4). https://doi.org/10.1007/s44163-022-00022-8
11. Kovalev S. M., Snasel V., Guda A. N., Kolodenkova A. E., Sukhanov A. V. The analytic review of the modern intelligent information technologies for industry. Vestnik RGUPS, 2019, (1): 60-75. (In Russ.) https://www.elibrary.ru/zbklil
12. Kirpun V. E., Solovyova N. A. Artificial intelligence in agricultural mechanization. Mathematical modeling and information technologies in the study of phenomena and processes in various fields of activity: Proc. II Intern. Sci.-Prac. Conf. of Students, Krasnodar, 14 Mar 2022. Krasnodar: Novatsiia, 2022, 151-156. (In Russ.) https://www.elibrary.ru/nqgueq
13. Bezlepkin E. A., Zaykova A. S. Neurophilosophy, philosophy of neuroscience, and philosophy of artificial intelligence: the problem of distinguishing. Russian Journal of Philosophical Sciences, 2021, 64(1): 71-87. (In Russ.) https://doi.org/10.30727/0235-1188-2021-64-1-71-87
14. Digilina O. B., Teslenko I. B., Nalbandyan A. A. The artificial intelligence: prospects for development and problems of humanization. RUDN Journal of Economics, 2023, 31(1): 170-183. https://doi.org/10.22363/2313-2329-2023-31-1-170-183
15. Shchitova A. A. Definition of artificial intelligence for legal regulation. Proceedings of the 2nd International Scientific and Practical Conference on Digital Economy (ISCDE 2020), Ekaterinburg, 5-6 Nov 2020. Ekaterinburg: Institute of Digital Economics; Atlantis Press, 2020, 616-620. https://doi.org/10.2991/aebmr.k.201205.104
16. Menczer F., Crandall D., Ahn Y.-Y., Kapadia A. Addressing the harms of AI-generated inauthentic content. Nature Machine Intelligence, 2023, 5(7): 679-680. https://doi.org/10.1038/s42256-023-00690-w
17. Wang P. On defining artificial intelligence. Journal of Artificial General Intelligence, 2019, 10(2): 1-37. https://doi.org/10.2478/jagi-2019-0002
18. Monett D., Lewis C. W. P., Thórisson K. R. Introduction to the JAGI Special Issue "On Defining Artificial Intelligence" - commentaries and author's response. Journal of Artificial General Intelligence, 2020, 11(2): 1-4. https://doi.org/10.2478/jagi-2020-0003
19. Simon H. A. Models of Man: Social and Rational. NY: John Wiley & Sons, 1957, 287.
20. Arkhipov V. V., Naumov V. B. Artificial intelligence and autonomous devices in legal context: on development of the first Russian law on robotics. Trudy SPIIRAN, 2017, (6): 46-62. (In Russ.) https://doi.org/10.15622/sp.55.2
21. Vasilyev A. A., Szpoper D., Matayeva M. H. The term "artificial intelligence" in the Russian law: doctrinal analysis. Legal Linguisctics, 2018, (7-8): 35-44. (In Russ.) https://www.elibrary.ru/ylqksd
22. Duft G., Durana P. Artificial intelligence-based decision-making algorithms, automated production systems, and big data-driven innovation in sustainable Industry 4.0. Economics, Management, and Financial Markets, 2020, 15(4): 9-18. https://doi.org/10.22381/EMFM15420201
23. Lu Y. Artificial intelligence: a survey on evolution, models, applications and future trends. Journal of Management Analytics, 2019, 6(1): 1-29. https://doi.org/10.1080/23270012.2019.1570365
24. Liu S., Wright A. P., Patterson B. L., Wanderer J. P., Turer R. W., Nelson S. D., McCoy A. B., Sittig D. F., Wright A. Using AI-generated suggestions from ChatGPT to optimize clinical decision support. Journal of the American Medical Informatics Association, 2023, 30(7): 1237-1245. https://doi.org/10.1093/jamia/ocad072
25. Brynjolfsson E., Mitchell T. What can machine learning do? Workforce implications. Science, 2017, 358(6370): 1530-1534. https://doi.org/10.1126/science.aap8062
26. Berente N., Gu B., Recker J., Santhanam R. Managing artificial intelligence. MIS Quarterly Special Issue: Managing AI, 2021, 45(3): 1433-1450. https://doi.org/10.25300/MISQ/2021/16274
27. The economics of artificial intelligence: an agenda, eds. Agrawal A., Gans J., Goldfarb A. Chicago-London: The University of Chicago Press, 2019, 642. https://doi.org/10.7208/chicago/9780226613475.001.0001
28. Grosan C., Abraham A. Rule-based expert systems. Intelligent systems: a modern approach. Berlin-Heidelberg: Springer, 2011, 149-185. https://doi.org/10.1007/978-3-642-21004-4_7
29. Bulavinova M. P. Risks and threats of new technologies based on artificial intelligence: a review. Sotsialnye i gumanitarnye nauki. Otechestvennaia i zarubezhnaia literatura. Seriia 8: Naukovedenie. Referativnyi zhurnal, 2018, (2): 23-41. (In Russ.) https://elibrary.ru/utcghm
30. Strümke I., Slavkovik M., Madai V. I. The social dilemma in artificial intelligence development and why we have to solve it. AI and Ethics, 2022, 2(4): 655-665. https://doi.org/10.1007/s43681-021-00120-w
31. von Eschenbach W. J. Transparency and the black box problem: why we do not trust AI. Philosophy & Technology, 2021, 34(4): 1607-1622. https://doi.org/10.1007/s13347-021-00477-0
32. Zednik C. Solving the Black Box Problem: a normative framework for Explainable Artificial Intelligence. Philosophy & Technology, 2021, 34(2): 265-288. https://doi.org/10.1007/s13347-019-00382-7
33. Leshkevich T. G. Metaphors of the digital age and the Black Box Problem. Philosophy of Science and Technology, 2022, 27(1): 34-48. (In Russ.) https://doi.org/10.21146/2413-9084-2022-27-1-34-48
34. Angelov P. P., Soares E. A., Jiang R., Arnold N. I., Atkinson P. M. Explainable artificial intelligence: an analytical review. WIREs Data Mining and Knowledge Discovery, 2021, 11(5). https://doi.org/10.1002/widm.1424
35. Shevskaya N. V. Explainable artificial intelligence and methods for interpreting results. Modeling, Optimization and Information Technology, 2021, 9(2). (In Russ.) https://doi.org/10.26102/2310-6018/2021.33.2.024
36. Percy C., Dragicevic S., Sarkar S., d'Avila Garcez A. S. Accountability in AI: from principles to industry-specific accreditation. AI Communications, 2021, 34(3): 181-196. https://doi.org/10.48550/arXiv.2110.09232
37. Mora-Cantallops M., Sánchez-Alonso S., García-Barriocanal E., Sicilia M.-A. Traceability for trustworthy AI: a review of models and tools. Big Data and Cognitive Computing, 2021, 5(2). https://doi.org/10.3390/bdcc5020020
38. Tariq S., Iftikhar A., Chaudhary P., Khurshid K. Is the ‘Technological Singularity scenario’ possible: can AI parallel and surpass all human mental capabilities? World Futures, 2023, 79(2): 200-266. https://doi.org/10.1080/02604027.2022.2050879
39. Nazarenko Yu. L. Technology review "Big Data" and software facilities applicable for it analysis and processing. European Science, 2017, (9): 25-30. (In Russ.) https://www.elibrary.ru/zrvwiv
40. Palmov S. V., Miftakhova A. A. Overview of the main methods of artificial intelligence. Perspektivy nauki, 2013, (11): 110-113. (In Russ.) https://elibrary.ru/sbilfb
41. Pavlychev A. V., Starodubov M. I., Galimov A. D. Using the Random Forest machine learning algorithm for the extraction of complex computer incidents. Voprosy kiberbezopasnosti, 2022, (5): 74-81. (In Russ.) https://doi.org/10.21681/2311-3456-2022-5-74-81
42. Belov S. D., Zrelova D. P., Zrelov P. V., Korenkov V. V. Overview of methods for automatic natural language text processing. System Analysis in Science and Education, 2020, (3): 8-22. (In Russ.) https://doi.org/10.37005/2071-9612-2020-3-8-22
43. Maksimov V. Yu., Klyshinsky E. S., Antonov N. V. The problem of understanding in artificial intelligence systems. Novye informatsionnye tekhnologii v avtomatizironannykh sistemakh, 2016, (19): 43-60. (In Russ.) https://www.elibrary.ru/vtznyr
44. Janiesch C., Zschech P., Heinrich K. Machine learning and deep learning. Electron Markets, 2021, 31(3): 685-695. https://doi.org/10.1007/s12525-021-00475-2
45. Dutta Majumder D. Pattern recognition, image processing and computer vision in fifth generation computer systems. Sadhana, 1986, 9(2): 139-156. https://doi.org/10.1007/BF02747523
46. Goryachkin B. S., Kitov M. A. Computer vision. E-Scio, 2020, (9): 318-346. (In Russ.) https://elibrary.ru/ebypio
47. Novikov N. I. The development and application of various computer vision algorithms for pattern and object recognition. Nauchnyi aspekt, 2023, 3(7): 306-312. (In Russ.) https://elibrary.ru/akykha
48. Khanna S., Kaushik A., Barnela M. Expert systems advances in education. Proceedings of National Conference on Computational Instrumentation (NCCI 2010). Chandigarh, 19-20 Mar 2010. CSIO Chandigarh, 2010, 109-112.
49. Favela L. H. Editor's introduction: innovative dynamical approaches to cognitive systems. Cognitive Systems Research, 2019, 58, 156-159. https://doi.org/10.1016/j.cogsys.2019.06.001
50. Novikov F. A. Symbolic artificial intelligence: mathematical foundations of knowledge representation. Moscow: Iurait, 2023. 278. (In Russ.)
51. Alekseeva E. A. The opposition of symbolism and connectionism in the history of artificial intelligence development. Istoriya, 2020, 11(11). (In Russ.) https://doi.org/10.18254/S207987840013021-2
52. Bezlepkin E. A. The problem of synthesis of connectionism and symbolism in models of weak artificial intelligence. Philosophy, Sociology, Law: Traditions and Prospects: Proc. All-Russian Sci. Conf., Novosibirsk, 19-20 Nov 2020. Novosibirsk: Ofset-TM, 2020, 10-13. (In Russ.) https://doi.org/10.47850/S.2020.1.2
53. Alekseev A. Yu. Philosophy of artificial intelligence: neurocomputing realizers of cognitions. Neirokompiutery: razrabotka, primenenie, 2014, (4): 7-8. (In Russ.) https://www.elibrary.ru/sefhnh
54. Musaev A. A., Grigoriev D. A. Extracting knowledge from text messages: overview and state-of-the-art. Computer Research and Modeling, 2021, 13(6): 1291-1315. (In Russ.) https://doi.org/10.20537/2076-7633-2021-13-6-1291-1315
55. Zhuravleva E. Yu. Epistemic status of digital data in modern scientifi c research. Voprosy filosofii, 2012, (2): 113-123. (In Russ.) https://www.elibrary.ru/owuwqz
56. Warschauer M., Yim S., Lee H., Zheng B. Recent contributions of data mining to language learning research. Annual Review of Applied Linguistics, 2019, (39): 93-112. https://doi.org/10.1017/S0267190519000023
57. Hassani H., Beneki C., Unger S., Mazinani M. T., Yeganegi M. R. Text mining in big data analytics. Big Data and Cognitive Computing, 2020, 4(1). https://doi.org/10.3390/bdcc4010001
58. Janani R., Vijayarani S. Text mining research: a survey. International Journal of Innovative Research in Computer and Communication Engineering, 2016, 4(4): 6564-6571. https://doi.org/10.15680/IJIRCCE.2016.0404040
59. Pruthi S. Knowledge discovery through data mining: an econometric perspective. International Journal of Advanced Engineering Research and Science, 2015, 2(10): 37-39.
60. Malisheva E. Yu., Lichagina V. A. Mathematical methods in linguistic research. Iazyk i kultura v epokhu integratsii nauchnogo znaniia i professionalizatsii obrazovaniia, 2022, (3-1): 170-177. (In Russ.) https://www.elibrary.ru/pxlqjx
61. Piotrowski R. G. Engineering linguistics and theory of language. Leningrad: Nauka, Leningr. otd-nie, 1979, 112. (In Russ.) https://www.elibrary.ru/zdizgh
62. Gularyan A. B. The principle of redundancy as the basis for constructing semantic systems. Istoricheskoe obozrenie, 2009, (10): 9-16. (In Russ.) https://www.elibrary.ru/uipidp
63. Khurana D., Koli A., Khatter K., Singh S. Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, 2023, 82(3): 3713-3744. https://doi.org/10.1007/s11042-022-13428-4
64. Kuratov Yu., Arkhipov M. Adaptation of deep bidirectional multilingual transformers for Russian language. Computational Linguistics and Intellectual technologies: Proc. Annual International Conference "Dialogue" (2019), Moscow, 29 May - 1 Jun 2019. Moscow, 2019, iss. 18, 333-339. https://www.elibrary.ru/bbvvkr
65. Dhumal Deshmukh R., Kiwelekar A. W. Deep learning techniques for part of speech tagging by natural language processing. Proceedings 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA 2020), Bangalore, 5-7 Mar 2020. IEEE, 2020, 76-81. https://doi.org/10.1109/ICIMIA48430.2020.9074941
66. Aung M. P., Moe A. L. New phrase chunking algorithm for Myanmar Natural Language Processing. Applied Mechanics and Materials, 2015, 695: 548-552. https://doi.org/10.4028/www.scientific.net/AMM.695.548
67. Stavrianou A., Andritsos P., Nicoloyannis N. Overview and semantic issues of text mining. ACM SIGMOD Record, 2007, 36(3): 23-34. https://doi.org/10.1145/1324185.1324190
68. Ozerova M. I. A review of intellectual machine translation methods. Russian Linguistic Bulletin, 2023, (1). (In Russ.) https://doi.org/10.18454/RULB.2023.37.6
69. Shankin A. A. Machine translation systems PROMT. Russia in the world: problems and prospects for the development of international cooperation in the humanitarian and social sphere: Proc. VI Intern. Sci.-Prac. Conf., Moscow-Penza, 25-26 Mar 2019. Penza: PenzSTU, 2019, 267-277. (In Russ.) https://www.elibrary.ru/zazsah
70. Klimova B., Pikhart M., Delorme Benites A., Lehr C., Sanchez-Stockhammer C. Neural machine translation in foreign language teaching and learning: a systematic review. Education and Information Technologies, 2023, 28(1): 663-682. https://doi.org/10.1007/s10639-022-11194-2
71. Calvillo E. A., Padilla A., Muñoz J., Ponce J. S., Fernandez-Breis J. T. Searching research papers using clustering and text mining. CONIELECOMP 2013: Proc. 23rd Intern. Conf. on Electronics, Communications and Computing, Cholula, Puebla, 11-13 Mar 2013. IEEE, 2013, 78-81. https://doi.org/10.1109/CONIELECOMP.2013.6525763
72. Manning C. D., Raghavan P., Schütze H. Introduction to information retrieval. Moscow: Viliams, 2011, 528. (In Russ.)
73. Basipov A. A., Demich O. V. Semantic search: issues and technologies. Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics, 2012, (1): 104-111. (In Russ.) https://www.elibrary.ru/ooobzv
74. Rathi K., Raj S., Mohan S., Singh Y. V. A review of state-of-the-art Automatic Text Summarisation. International Journal of Creative Research Thoughts, 2022, 10(4): e527-e541. https://ssrn.com/abstract=4107774
75. Belyakova A. Yu., Belyakov Yu. D. Overview of text summarization methods. Inzhenernyj vestnik Dona, 2020, (10): 142-159. (In Russ.) https://www.elibrary.ru/ayyyfq
76. Joshi A., More P., Shah S., Sahitya A. An algorithmic approach for text summarization. Proceedings 2023 International Conference for Advancement in Technology (ICONAT), Goa, 24-26 Jan 2023. IEEE, 2023. https://doi.org/10.1109/ICONAT57137.2023.10080575
77. Joshi A., Bhattacharyya P., Carman M. J. Automatic sarcasm detection: a survey. ACM Computing Surveys, 2018, 50(5). https://doi.org/10.1145/3124420
78. Li J., Hovy E. Reflections on sentiment / opinion analysis. In: Cambria E., Das D., Bandyopadhyay S., Feraco A. A practical guide to sentiment analysis. Springer, 2017, 41-59. https://doi.org/10.1007/978-3-319-55394-8_3
79. Liu B., Zhang L. A survey of opinion mining and sentiment analysis. Mining Text Data, eds. Aggarwal C. C., Zhai C. X. Boston: Springer, 2012, 415-463. https://doi.org/10.1007/978-1-4614-3223-4_13
80. Maksimenko O. I. Text sentiment analysis: the case of mass media texts. Functional semantics and semiotics of sign systems: Intern. Sci. Conf., Moscow, 28-30 Oct 2014. Moscow: PFUR, 2014, pt. I, 96-105. (In Russ.) https://www.elibrary.ru/tdlwhh
81. Loukachevitch N. V., Rubtsova Yu. V. Entity-oriented sentiment analysis of tweets: results and problems. Data Analytics and Management in Data Intensive Domains: Proc. XVII Intern. Conf. DAMDID / RCDL'2015, Obninsk, 13-16 Oct 2015. Obninsk, 2015, 278-286. (In Russ.) https://www.elibrary.ru/vzydrt
82. Chernyshevich M. V. Opinion classification for automatic sentiment analysis of the text. Uchenye zapiski UO "VGU im. P. M. Masherova", 2018, 28: 136-140. (In Russ.) https://www.elibrary.ru/vxagrm
83. Tarshis E. Ya. Content analysis: principles of methodology. (Building a theoretical foundation. Ontology, analytics, and phenomenology of the text. Research programs). 3rd ed. Moscow: URSS, 2021, 174. (In Russ.) https://elibrary.ru/tghhjf
84. Burnashev R. F., Mirzayeva A. B. Content analysis as a tool of quantitative linguistics. Science and Education, 2022, 3(12): 1201-1210. (In Russ.)
85. Khromenkov P. N., Maksimenko O. I. Conflict texts research by the content-analysis: history and the present. Uchenye zapiski NOPriL, 2013, (4): 109-117. (In Russ.) https://elibrary.ru/seyajt
86. Safonkina O. S., Irgizova K. V. Using the corpus linguistics in the digital educational environment. Nizhegorodskoe obrazovanie, 2019, (2): 112-117. (In Russ.) https://elibrary.ru/javeam
87. Sorokina S. G. Constructing the phenomenon of self-concept: semantics and functions of the self lexeme. Modern Pedagogical Education, 2023, (5): 266-270. (In Russ.) https://elibrary.ru/fxhcak