Russian Federation
Russian Federation
GRNTI 27.01 Общие вопросы математики
GRNTI 31.01 Общие вопросы химии
GRNTI 34.01 Общие вопросы биологии
The object is mathematical models and their formalization by differential equation systems. The aim is to popularize stochastic models and differential equation systems which solution allows an analytical form. A model formulation and a process of finding a solution to equation systems are of interest. In the queueing theory many models are formalized by systems of linear differential equations with one or more parameters in which distribution of states of queueing systems are unknown functions. In such systems Markov processes are often grounding in the theory of differential equations construction; in a special case postulates of Poisson process are used. Analytical solution of equation systems exists but it is hard to find by traditional methods. In our study we offer a method which allows to find an analytical solution not only for probability distribution but also for moments of any order from one equation system. Description of procedure of differential equation generation for moments of random order varieties is presented. The method is based on the usage of generating (characteristic) functions. This method is effective because it allows to find solutions for moments (here it is expectation and variance) without complex probability calculations. It is especially important in empirical researches of systems that consist of many elements. For example, when we analyze function effectiveness of operating and designed scaling computing systems and supercomputers. Three models and their formalization by differential equation systems that correspond to stochastic processes and analytical solutions of diverse complexity are formulated. Connection between stochastic differential equations systems and their solutions with probability distributions that are classical in probability theory is shown.
the Queuing theory, systems of stochastic differential equations, generating (characteristic) function, probability distribution, moments, Markov process
1. Li T. Analysis of explicit tau-leaping schemes for simulating chemically reacting systems. Multiscale modeling and simulation, 2007, vol. 6, no. 2, pp. 417-436.
2. Zhang D., Nastac L. Numerical modeling of the dispersion of ceramic nanoparticles during ultrasonic processing of aluminum-based nanocomposites. Journal of Materials Research and Technology, 2014, vol. 3, no. 4, pp. 296-302.
3. Paschalis A., Molnar P., Fatichi S., Burlando P. On temporal stochastic modeling of precipitation, nesting models across scales. Advances in Water Resources, 2014, vol. 63, pp. 152-166.
4. Niu, Y., Burrage, K., Zhang, C. Multi-scale approach for simulating time-delay biochemical reaction systems. IET Systems Biology, 2014, vol. 9, no. 1, pp. 31-38.
5. Babich O., Prosekov A.Yu., Dyshlyuk L.S., Ivanova S.A. Investigation of kinetic aspects of L-phenylanine ammonia-lyase production in pigmental yeast Kinetic aspects of L-phenylanine production. Chimica Oggi-Chemistry Today, 2015, vol. 33, no. 6, pp. 16-20.
6. Barbuti R., Bove P., Milazzo P., Pardini G. Minimal probabilistic P systems for modelling ecological systems. Theoretical Computer Science, 2015, vol. 608, no. 1, pp. 36-56.
7. Rieck C., Bück A., Tsotsas E. Stochastic Modelling of Particle Coating in Fluidized Beds. Procedia Engineering, 2015, vol. 102, pp. 996-1005.
8. Chan J.C.C., Grant A.L. Modeling energy price dynamics: GARCH versus stochastic volatility. Energy Economics, 2016, vol. 54, pp. 182-189.
9. Pesmazoglou I., Kempf A.M., Navarro-Martinez S. Stochastic modeling of particle aggregation. International Journal of Multiphase Flow, 2016, vol. 80, pp. 118-130.
10. Stratford D.S., Pollino C.A., Brown A.E. Modelling population responses to flow: The development of a generic fish population model. Environmental Modelling & Software, 2016, vol. 79, pp. 96-119.
11. MacNamara S., Burrage K. Stochastic modeling of naïve t cell homeostasis for competing clonotypes via the master equation. Multiscale modeling and simulation, 2010, vol. 8, no. 4, pp. 1325-1347.
12. Munsky B., Khammash M. The finite state projection algorithm for the solution of the chemical master equation. The Journal of chemical physics, 2006, vol. 124, no. 4, pp. 44-104.
13. Niu Y., Burrage K., Chen L. Modelling biochemical reaction systems by stochastic differential equations with reflection. Journal of Theoretical Biology, 2016, vol. 396, pp. 90-104.
14. Pavsky V.A., Pavsky K.V., Khoroshevsky V.G. Vychislenie pokazateley zhivuchesti raspredelennykh vychislitel'nykh sistem i osushchestvimosti resheniya zadach [Calculation of vitality metrics distributed computing systems and the feasibility of solving problems]. Iskusstvennyy intellekt [Artificial Intelligence], 2006, no. 4, pp. 28-34.
15. Khoroshevsky V.G., Pavsky V.A. Calculating the efficiency indices of distributed computer system functioning. Optoelectronics, Instrumentation and Data Processing, 2008, vol. 44, no. 2, pp. 95-104.
16. Pavsky V.A., Pavsky K.V. Stokhasticheskoe modelirovanie i otsenki razmera strukturnoy izbytochnosti masshtabiruemykh raspredelennykh vychislitel'nykh sistem [Stochastic modeling and estimation of the size of the structural redundancy scalable distributed computing systems]. Izvestiya YuFU. Tekhnicheskie nauki [Proceedings of the SFU. Engineering], 2014, no. 12, no. 161, pp. 66-73.
17. Pavsky V.A., Pavsky K.V. Stochastic simulation and analysis of the operation of computing systems with structural redundancy. Optoelectronics, instrumentation and data processing, 2014, vol. 50, no. 4, pp. 363-369.
18. Yustratov V.P., Pavskii V.A., Krasnova T.A., Ivanova S.A. Mathematical modeling of electrodialysis demineralization using a stochastic model. Theoretical foundations of chemical engineering, 2005, vol. 39, no. 3, pp. 259-262.
19. Pavsky V.A., Skolubovich Yu.L., Krasnova T.A. Modelirovanie protsessa ochistki prirodnykh i stochnykh vod [Modeling process of purification natural and waste waters]. Novosibirsk NSABU Publ., 2005. 144 p.
20. Ivanova S.A. Stokhasticheskie modeli tekhnologicheskikh protsessov pererabotki dispersnykh sistem obezzhirennogo moloka [Stochastic models of technological processes of processing of dispersions of skim milk]. Kemerovo KemTIPP Publ., 2010. 124 p.
21. Ivanova S.A., Pavsky V.A., Poplavskaya M.A., Novoselova M.V. Studying the biokinetics of pigmented yeast by stochastic methods. Food and Raw Materials, 2014, vol. 2, no. 1, pp. 17-21.
22. Ivanova S.A. Studying the foaming of protein solutions by stochastic methods. Food and Raw Materials, 2014, vol. 2, no. 2, pp. 140-146.
23. Ivanova S.A., Pavsky V.A. Stochastic modeling of protein solution foaming process. Theoretical foundations of chemical engineering, 2014, vol. 48, no. 6, pp. 848-854.
24. Saaty T. Elements of queueing theory with application. New York: Dover publications, 1961. 436 p.
25. Feller W. An introduction to probability theory and its applications. New York: Wiley interscience, 1968. 528 p.
26. Gnedenko V.E. Kurs teorii veroyatnostey [The course in probability theory]. Moscow: LKS Publ., 2007. 448 p.
27. Venttsel' E.S., Ovcharov L.A. Teoriya sluchaynykh protsessov i ee inzhenernye prilozheniya [The theory of random processes and its engineering applications]. Moscow: High School Publ., 2000. 480 p.
28. Gnedenko B.V., Kovalenko I.N. Vvedenie v teoriyu massovogo obsluzhivaniya [Introduction to queuing theory]. Moscow: Editorial URSS Publ., 2005. 400 p.
29. Kleinrock L. Queueing systems, volume 1. Theory. New York: Wiley interscience, 1975. 432 p.
30. Sveshchnikov A.G., Tikhonov A.N. Teoriya funktsii kompleksnogo peremennogo [The theory of functions of a complex variable]. Moscow: FIZMATLIT Publ., 2010. 336 p.
31. Pavsky V.A. Ob osushchestvimosti resheniya potoka prostykh zadachna odnorodnykh vychislitel'nykh sistemakh [On the feasibility of solving a task flow simple homogeneous computing systems]. Vychislitel'nye sistemy [Computational Systems], 1972, vol. 51, pp. 48-58.
32. Prabkhu N. Metody teorii massovogo obsluzhivaniya i upravleniya zapasami [Methods of queuing and inventory management]. Moscow: Editorial URSS Publ., 1984. 499 p.
33. Pavsky V.A., Pavsky K.V. Vychislenie momentov sluchaynykh velichin pri erlangovskom vremeni obsluzhivaniya [Calculation of moments of random variables with Erlang service time]. Materialy 13 mezhdunarodnoy nauchno - prakticheskoy konferentsii «Informatsionnye tekhnologii i matematicheskoe modelirovanie», ch.2 [Proceedings of the 13th international scientific - practical conference "Information Technologies and Mathematical Modeling", Part 2], Tomsk, TSU Publishing House, 2014, pp. 198-202.