Premium-Grade Raw Milk: Biotechnological Solutions
Abstract and keywords
Abstract:
To maintain market competitiveness, raw milk production must reconcile rigorous safety protocols with operational efficiency. This review provides a comprehensive taxonomy of biotechnological solutions that support the precision-driven optimization of milk quality at the point of origin. Milk production cycle consists of four interconnected technological modules. 1) Modern genetic and reproductive technologies include genomic selection for loci CSN3, DGAT1, BoLA-DRB3, as well as the OPU-IVP-TE complex with preimplantation diagnosis. They enable the targeted development and rapid dissemination of superior genotypes characterized by enhanced productivity, optimized milk composition, and robust disease resistance. 2) Nutritional biotechnology and microbiome engineering facilitate the precision modulation of ruminal fermentation through the strategic application of probiotics and enzymes. In addition, microbial inoculants and adsorbents in feed storage make it possible to plan nutritional value of animal diet and minimize chemical contamination (mycotoxins). 3) Biological methods aimed at udder health control and microbiological purity of raw materials. Probiotics, bacteriophages, immunomodulators, and enzymes offer a safe alternative to antibiotics. This group also includes technologies for biological conditioning of equipment. 4) Biosensorics and digital platforms provide continuous predictive monitoring, e.g., in-line sensors for composition, somatic cell count, pathogens, inhibitory substances; the digital twin herd, etc. Implemented as an integrated, synergistic framework, these solutions mitigate the impact of empirical variables on raw milk quality, ensuring a more consistent and predictable production profile. Biotechnologies are an economically justified strategy that guarantees compliance of raw materials with regulatory standards by providing raw milk with reproducible functional and technological properties. They facilitate deep processing and encourage import substitution, thus strengthening the export potential of the domestic dairy industry.

Keywords:
raw milk, milk quality, biotechnology, genomic selection, microbiome, mastitis, probiotics, bacteriophages, biosensors, digitalization
References

1. Gonçalves J. L. Pathogen effects on milk yield and composition in chronic subclinical mastitis in dairy cows / J. L. Gonçalves [et al.] // Veterinary Journal. 2020. Vol. 262. Article number 105473. https://doi.org/10.1016/j.tvjl.2020.105473

2. Gai N. Effect of protein genotypes on physicochemical properties and protein functionality of bovine milk: A review / N. Gai [et al.] // Foods. 2021. Vol. 10(10). Article number 2409. https://doi.org/10.3390/foods10102409

3. Loretc, O. G. Tehnologicheskie svoystva moloka v zavisimosti ot sezona goda / O. G. Loretc, O. V. Gorelik, O. P. Neverova // BIO. 2019. № 1(220). S. 8–11. https://elibrary.ru/qrioya

4. Pegolo, S. Associations between differential somatic cell count and milk yield, quality, and technological characteristics in Holstein cows / S. Pegolo [et al.] // Journal of Dairy Science. 2021. Vol. 104(4). P. 4822–4836. https://doi.org/10.3168/jds.2020-19084

5. Karpenya, M. M. Vliyanie soderzhaniya somaticheskih kletok i bakterial'noy obsemenennosti moloka-syr'ya na strukturu ego pererabotki / M. M. Karpenya [i dr.] // Uchenye zapiski uchrezhdeniya obrazovaniya Vitebskaya ordena Znak pocheta gosudarstvennaya akademiya veterinarnoy mediciny. 2017. T. 53, № 4. S. 114–117. https://elibrary.ru/ymqvpd

6. Gadzhiev, Z. K. Polimorfizm gena CSN2 (beta-kazein) u korov molochnogo napravleniya produktivnosti / Z. K. Gadzhiev [i dr.] // Izvestiya Gorskogo gosudarstvennogo agrarnogo universiteta. 2025. T. 62, № 2. S. 31–38. https://doi.org/10.54258/20701047_2025_62_2_31; https://elibrary.ru/dewews

7. Amalfitano, N. Role of CSN2, CSN3, and BLG genes and the polygenic background in the cattle milk protein profile / N. Amalfitano [et al.] // Journal of Dairy Science. 2022. Vol. 105(7). P. 6001–6020. https://doi.org/10.3168/jds.2021-21421

8. Mahmoudi, P. Strong evidence for association between K232A polymorphism of the DGAT1 gene and milk fat and protein contents: A meta-analysis / P. Mahmoudi, A. Rashidi // Journal of Dairy Science. 2023. Vol. 106(4). P. 2573–2587. https://doi.org/10.3168/jds.2022-22315

9. Andrade, T. E. G. The DRB3 gene of the bovine major histocompatibility complex: discovery, diversity and distribution of alleles in commercial breeds of cattle and applications for development of vaccines / T. E. G. Andrade [et al.] // Journal of Dairy Science. 2024. Vol. 107(12). P. 11324–11341. https://doi.org/10.3168/jds.2023-24628

10. Tizard, I. R. Chapter 9 - BoLA: the bovine major histocompatibility complex // The Immunology of the Domestic Ruminants. Ed. by I. R. Tizard. – Academic Press, 2025. – P. 157–173. https://doi.org/10.1016/B978-0-443-33572-3.00009-6

11. Doublet, A. C. The impact of genomic selection on genetic diversity and genetic gain in three French dairy cattle breeds / A. C. Doublet [et al.] // Genetics, Selection, Evolution. 2019. Vol. 51. Article number 52. https://doi.org/10.1186/s12711-019-0495-1

12. Salek, F. Factors affecting the success of ovum pick-up, in vitro production and cryopreservation of embryos in cattle / F. Salek [et al.] // Animals. 2025. Vol. 15(3). Article number 344. https://doi.org/10.3390/ani15030344

13. Mapletoft, R. J. History and perspectives on bovine embryo transfer / R. J. Mapletoft // Animal Reproduction. 2018. Vol. 10(3). P. 168–173.

14. Funnell, B. Disease risk of in vitro produced embryos: A review of current commercial practices in the context of international trade with emphasis on bovine embryos / B. Funnell [et al.] // Theriogenology. 2024. Vol. 230. P. 212–219. https://doi.org/10.1016/j.theriogenology.2024.09.019

15. Pacheco, H. A. Invited review: Phenotyping strategies and genetic background of dairy cattle behavior in intensive production systems—From trait definition to genomic selection / H. A. Pacheco [et al.] // Journal of Dairy Science. 2025. Vol. 108(1). P. 6–32. https://doi.org/10.3168/jds.2024-24953

16. Knurov, D. A. Perspektivy razvitiya skotovodstva putem transplantacii embrionov / D. A. Knurov, A. V. Ignat'ev, D. V. Ivanova // Effektivnoe zhivotnovodstvo. 2023. № 5(187). S. 22–23. https://elibrary.ru/cyjmix

17. Madison, V. V. Embriotransfer na proizvodstve: I. Yubilei i statistika / V. V. Madison, L. V. Madison // Vestnik Chuvashskogo gosudarstvennogo agrarnogo universiteta. 2025. № 1(32). S. 118–126. https://doi.org/10.48612/vch/13a3-4kb2-8uza; https://elibrary.ru/qzcktd

18. Iamartino, D. FECUND EU-Project: Optimisation of early reproductive success in dairy cattle through the definition of new trait and improved reproductive biotechnology // Animal Reproduction Science. 2014. Vol. 149(1–2). P. 100. https://doi.org/10.1016/j.anireprosci.2014.06.015

19. Amin, A. B. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review / A. B. Amin, Sh. Mao // Animal Nutrition. 2021. Vol. 7(1). – P. 31–41. https://doi.org/10.1016/j.aninu.2020.10.005

20. Yang, J. Understanding the differences in rumen bacteria and their impact on dairy cows’ production performance: A review / J. Yang [et al.] // Animal Nutrition. 2025. Vol. 22. P. 259–279. https://doi.org/10.1016/j.aninu.2025.04.006

21. By, W. C. Bacillus subtilis co-transfected with a lysine-rich and a methionine-rich protein gene and its effect on cow milk production / W. C. By [et al.] // Journal of Northeast Agricultural University (English Edition). 2016. Vol. 23(4). P. 47–54. https://doi.org/10.1016/S1006-8104(17)30006-5

22. Sun, P. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows / P. Sun, J. Q. Wang, L. F. Deng // Animal. 2013. Vol. 7(2). P. 216–222. https://doi.org/10.1017/S1751731112001188

23. Martinez, O. A. Effects of feeding a fibrolytic enzyme to Holstein dairy cows on milk production and reproduction / O. A. Martinez [et al.] // Applied Animal Science. 2023. Vol. 39(5). P. 306–316. https://doi.org/10.15232/aas.2023-02386

24. Yang, J. Lactational performance, feeding behavior, ruminal fermentation and nutrient digestibility in dairy cows fed whole-plant faba bean silage-based diet with fibrolytic enzyme / J. Yang[et al.] // Animal. 2022. Vol. 16(9). Article number 100606. https://doi.org/10.1016/j.animal.2022.100606

25. Juckem, K. A. Effect of dietary starch concentration and direct-fed microbial supplementation on lactation performance, total-tract nutrient digestibility, and enteric methane emissions by dairy cows / K. A. Juckem [et al.] // Journal of Dairy Science. 2025. Vol. 108(11). P. 12257–12274. https://doi.org/10.3168/jds.2025-26694

26. McGuffey, R. K. A 100-Year Review: Metabolic modifiers in dairy cattle nutrition // Journal of Dairy Science. 2017. Vol. 100, № 12. P. 10113–10142. https://doi.org/10.3168/jds.2017-12987

27. Elmhadi, M. E. Subacute ruminal acidosis in dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies / M. E. Elmhadi [et al.] // Animal Nutrition. 2022. Vol. 10. P. 148–155. https://doi.org/10.1016/j.aninu.2021.12.008

28. Bikchantaev, I. T. Effektivnost' novyh shtammov molochnokislyh bakteriy i B. licheniformis v konservirovanii kukuruzy / I. T. Bikchantaev, D. M. Afordoan'i // Agrarnyy nauchnyy zhurnal. 2022. № 4. S. 53–56. https://doi.org/10.28983/asj.y2022i4pp53-56; https://elibrary.ru/wgklbd

29. Yan, X. High-moisture alfalfa silage fermentation: a comparative study on the impact of additives including formic acid, Lactobacillus plantarum, cinnamon essential oil, and wood vinegar / X. Yan [et al.] // Microbiology Spectrum. 2025. Vol. 13(9). P. e00003-25. https://doi.org/10.1128/spectrum.00003-25; https://elibrary.ru/etyrzy

30. Muck, R. E. Silage review: Recent advances and future uses of silage additives / R. E. Muck [et al.] // Journal of Dairy Science. 2018. Vol. 101(5). P. 3980–4000. https://doi.org/10.3168/jds.2017-13839

31. Kosicki, R. Multiannual mycotoxin survey in feed materials and feedingstuffs / R. Kosicki [et al.] // Animal Feed Science and Technology. 2016. Vol. 215. P. 165–180. https://doi.org/10.1016/j.anifeedsci.2016.03.012

32. Oliveira, A. S. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows / A. S. Oliveira [et al.] // Journal of Dairy Science. 2017. Vol. 100(6). P. 4587–4603. https://doi.org/10.3168/jds.2016-11815

33. Akinmoladun, O. F. Multiple Mycotoxin Contamination in Livestock Feed: Implications for Animal Health, Productivity, and Food Safety / O. F. Akinmoladun [et al.] // Toxins. 2025. Vol. 17(8.). Article number 365. https://doi.org/10.3390/toxins17080365

34. Kostomahin, N. Kontrol' moloka-syr'ya na soderzhanie antibiotikov / N. Kostomahin, V. Ostrouhova, T. Anan'eva // Veterinariya sel'skohozyaystvennyh zhivotnyh. 2024. № 9(222). S. 44–48. https://elibrary.ru/jmyjat

35. Andreeva, A. A. Etiologiya i epizootologiya mastita korov (analiticheskiy obzor) / A. A. Andreeva [i dr.] // Veterinariya segodnya. 2024. T. 13, № 1. S. 27–35. https://doi.org/10.29326/2304-196X-2024-13-1-27-35; https://elibrary.ru/myqkgf

36. Ruiz-Romero, R. A. The role of non-aureus Staphylococcus in small ruminant mastitis: A systemic review on etiological agents, risk factors, virulence determinants, and novel treatments / R. A. Ruiz-Romero, N. Ghavipanje, E. Vargas-Bello-Perez // Small Ruminant Research. 2025. Vol. 245. Article number 107475. https://doi.org/10.1016/j. smallrumres.2025.107475

37. Ma, Y. Anti-Inflammatory potential of lactic acid bacteria for dairy cows during the periparturient period / Y. Ma [et al.] // Animal Feed Science and Technology. 2025. Vol. 321. Article number 116234. https://doi.org/10.1016/j.anifeedsci.2025.116234

38. Tilocca, B. Milk microbiota: Characterization methods and role in cheese production / B. Tilocca [et al.] // Journal of Proteomics. 2020. Vol. 210. Article number 103534. https://doi.org/10.1016/j.jprot.2019.103534

39. Ngassam-Tchamba, C. In vitro and in vivo assessment of phage therapy against Staphylococcus aureus causing bovine mastitis / C. Ngassam-Tchamba [et al.] // Journal of Global Antimicrobial Resistance. 2020. Vol. 22. P. 762–770. https://doi.org/10.1016/j.jgar.2020.06.020

40. Guo, M. Development and mouse model evaluation of a new phage cocktail intended as an alternative to antibiotics for treatment of Staphylococcus aureus-induced bovine mastitis / M. Guo [et al.] // Journal of Dairy Science. 2024. Vol. 107(8). P. 5974–5987. https://doi.org/10.3168/jds.2024-24540

41. Pereira, H. P. Evaluation and characterization of lytic phages and their recombinant endolysins for control of Staphylococcus aureus aiming to mitigate bovine mastitis / H. P. Pereira [et al.] // Microbial Pathogenesis. 2025. Vol. 199. Article number 107188. https://doi.org/10.1016/j.micpath.2024.107188

42. Gonal, B. N. Epidemiology, antimicrobial resistance, economic burden, and management approaches for staphylococcus aureus-associated bovine mastitis: a systematic review / B. N. Gonal [et al.] // Animals and Zoonoses. 2025 (In press). https://doi.org/10.1016/j.azn.2025.12.001

43. Ruegg, P. L. A 100-Year Review: Mastitis detection, management, and prevention / P. L. Ruegg // Journal of Dairy Science. 2017. Vol. 100(12). P. 10381–10397. https://doi.org/10.3168/jds.2017-13023

44. Zduńczyk, S. Bacteriophages and associated endolysins in therapy and prevention of mastitis and metritis in cows: Current knowledge / S. Zduńczyk, T. Janowski // Animal Reproduction Science. 2020. Vol. 218. Article number 106504. https://doi.org/10.1016/j.anireprosci.2020.106504

45. Marković, K. G. Biofilms in dairy products: safety hazard or beneficial asset? / K. G. Marković, M. Ž. Grujović, O. D. Stefanović // International Dairy Journal. 2025. Vol. 171. Article number 106381. https://doi.org/10.1016/j.idairyj.2025.106381

46. Desmousseaux, C. Biofilm Formation in Dairy: A Food Safety Concern—Biofilms in the milking machine, from laboratory scale to on-farm results / C. Desmousseaux [et al.] // Journal of Dairy Science. 2025. Vol. 108(8). P. 8120–8140. https://doi.org/10.3168/jds.2024-25352

47. Meireles, A. The current knowledge on the application of anti-biofilm enzymes in the food industry / A. Meireles [et al.] // Food Research International. 2016. Vol. 86. P. 140– 146. https://doi.org/10.1016/j.foodres.2016.06.006

48. Moreno, J. Comprehensive analysis of antimicrobial resistance, biofilm formation and virulence factors of staphylococci isolated from bovine mastitis / J. Moreno [et al.] // Heliyon. 2025. Vol. 11(4). Article number e42749. https://doi.org/10.1016/j.heliyon.2025.e42749

49. Sabino, Y. N. V. Exopolysaccharides produced by Bacillus spp. inhibit biofilm formation by Staphylococcus aureus strains associated with bovine mastitis / Y. N. V. Sabino [et al.] // International Journal of Biological Macromolecules. 2023. Vol. 253. Article number 126689. https://doi.org/10.1016/j.ijbiomac.2023.126689

50. Sharma, V. Technological revolutions in smart farming: Current trends, challenges & future directions / V. Sharma, A. K. Tripathi, H. Mittal // Computers and Electronics in Agriculture. 2022. Vol. 201. Article number 107217. https://doi.org/10.1016/j.compag.2022.107217

51. Guliy, O. I. Biosensornye sistemy dlya opredeleniya antibiotikov / O. I. Guliy [i dr.] // Biofizika. 2021. T. 66, № 4. S. 657–667. https://doi.org/10.31857/S0006302921040050; https://elibrary.ru/unlghn

52. Han, M. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk / M. Han [et al.] // Sensors and Actuators B: Chemical. 2019. Vol. 292. P. 94–104. https://doi.org/10.1016/j.snb.2019.04.019

53. Islam, M. H. Agriculture 4.0 adoption challenges in the emerging economies: Implications for smart farming and sustainability / Md. H. Islam [et al.] // Journal of Economy and Technology. 2024. Vol. 2. P. 278–295. https://doi.org/10.1016/j.ject.2024.09.002

54. Rutten, C. J. Invited review: Sensors to support health management on dairy farms / C. J. Rutten // Journal of Dairy Science. 2013. Vol. 96(4). P. 1928–1952. https://doi.org/10.3168/jds.2012-6107

55. Liang, Q. Detection of water adulteration levels in milk using near-infrared spectroscopy combined with chemometrics / Q. Liang [et al.] // Journal of Dairy Science. 2025. Vol. 108(7). P. 6852–6866. https://doi.org/10.3168/jds.2025-26631

56. Xu, R. Recent advancements in chemometrics based non-destructive analytical techniques for rapid detection of adulterants in milk and dairy products – A review / R. Xu [et al.] // Food Control. 2025. Vol. 174. Article number 111247. https://doi.org/10.1016/j.foodcont.2025.111247

57. Billah, M. Review: Genomic selection in the era of phenotyping based on digital images / M. Billah [et al.] // Animal. 2025. Vol. 19. Article number 101486. https://doi.org/10.1016/j.animal.2025.101486

58. Stygar, A. H. Measuring dairy cow welfare with real-time sensor-based data and farm records: a concept study / A. H. Stygar [et al.] // Animal. 2023. Vol. 17(12). Article number 101023. https://doi.org/10.1016/j.animal.2023.101023

59. Suhovol'skiy, O. Biotehnologiya v zhivotnovodstve / O. Suhovol'skiy // Veterinariya sel'skohozyaystvennyh zhivotnyh. 2020. № 5. S. 3–8. https://elibrary.ru/vdcdeo

60. Mordvinova, V. A. Razvitie sistemy standartizacii RF v oblasti syrodeliya / V. A. Mordvinova, N. N. Onosovskaya // Syrodelie i maslodelie. 2020. № 1. S. 10–12. https://doi.org/10.31515/2073-4018-2020-1-10-12; https://elibrary.ru/xbpwjs

61. Illarionova, E. E. Associaciya polimorfizmov v bioklastere genov kazeina i syvorotochnyh belkov s tehnologicheskimi svoystvami molochnogo syr'ya / E. E. Illarionova [i dr.] // Molochnaya promyshlennost'. 2021. № 3. S. 60–62. https://doi.org/10.31515/1019-8946-2021-03-60-62; https://elibrary.ru/qdervg

62. Asafov, V. A. Novye tehnologii i kachestvo molochnyh produktov / V. A. Asafov, V. D. Haritonov // Molochnaya promyshlennost'. 2018. № 10. S. 39–41. https://elibrary.ru/yamkvv

Login or Create
* Forgot password?