Voronezh, Russian Federation
Voronezh, Russian Federation
Voronezh, Voronezh, Russian Federation
Bioactive peptides come from various plant and animal protein sources, e.g., native whey. Native whey is a permeate obtained in the process of skim milk microfiltration. This research involved native whey obtained at the Kalacheevsky Cheese Factory, Voronezh Dairy Plant. Its composition was studied using standard methods, including mathematical statistics, to compare it with the composition of cheese whey. The protein and mineral profile of the native whey appeared to depend on the microfiltration conditions during processing. To obtain a protein isolate based on native whey, it was subjected to reverse osmosis concentration followed by ultrafiltration. The resulting native whey isolate had a protein mass fraction of 90.8±0.7% and served as a substrate for enzymatic hydrolysis, which involved two different enzyme preparations, Protamex and Flavourzyme. The hydrolysis degree was 35%. The research confirmed the feasibility of using native whey as a raw material for biologically active peptides.
specialized nutrition, microfiltration, skim milk, whey, protein hydrolysis, biologically active peptides
1. Kruchinin, A. G. Biologicheski aktivnye peptidy moloka: obzor / A. G. Kruchinin, E. Yu. Agarkova // Pischevaya promyshlennost'. 2020. № 12. S. 92–96. https://doi.org/10.24411/0235-2486-2020-10151; https://www.elibrary.ru/piiqsa
2. Abebaw Tadesse, S. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market / S. Abebaw Tadesse, S. A. Emire // Heliyon. 2020. Vol. 6(8). e04765. https://doi.org/10.1016/j.heliyon.2020.e04765
3. Chen, L. Collaborative optimization and molecular docking exploration of novel ACE-inhibitory peptides from bovine milk by complex proteases hydrolysis / L. Chen [et al.] // Artificial Cells, Nanomedicine, and Biotechnology. 2020. Vol. 48(1). R. 180–187. https://doi.org/10.1080/21691401.2019.1699824
4. Okagu, I. U. Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides / I. U. Okagu [et al.] // Food Chemistry: Molecular Sciences. 2022. Vol. 4. 100078. https://doi.org/10.1016/j.fochms.2022.100078
5. Samtiya, M. Health-promoting and therapeutic attributes of milk-derived bioactive peptides / M. Samtiya [et al.] // Nutrients. 2022. Vol. 14(15). 3001. https://doi.org/10.3390/nu14153001
6. O’Keeffe, M. B. Identification of angiotensin converting enzyme inhibitory and antioxidant peptides in a whey protein concentrate hydrolysate produced at semi-pilot scale / M. B. O'Keeffe [et al.] // International Journal of Food Science & Technology. 2017. Vol. 8(52). P. 1751–1759. https://doi.org/10.1111/ijfs.13448
7. Fajardo-Espinoza, F. S. Production of bioactive peptides from bovine colostrum whey using enzymatic hydrolysis / F. S. Fajardo-Espinoza [et al.] // Revista Mexicana de Ingenieria Quimica. 2020. Vol. 19(1). P. 1–9. https://doi.org/10.24275/rmiq/Alim525
8. Shazly, A. B. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates / A. B. Shazly [et al.] // Food Chemistry. 2017. Vol. 232, R. 753–762. https://doi.org/10.1016/j.foodchem.2017.04.071
9. Espejo-Carpio, F. J. Angiotensin I-converting enzyme inhibitory activity of enzymatic hydrolysates of goat milk protein fractions / F. J. Espejo-Carpio [et al.] // International Dairy Journal. 2013. Vol. 32(2). P. 175–183. https://doi.org/10.1016/j.idairyj.2013.04.002
10. Gong, H. Identification of novel peptides from goat milk casein that ameliorate high-glucose-induced insulin resistance in HepG2 cells / H. Gong [et al.] // Journal of Dairy Science. 2020. Vol. 103(6). R. 4907–4918. https://doi.org/10.3168/jds.2019-17513
11. Abdel-Hamid, M. Camel milk whey hydrolysate inhibits growth and biofilm formation of Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus / M. Abdel-Hamid [et al.] // Food Control. 2020. Vol. 111. 107056. https://doi.org/10.1016/j.foodcont.2019.107056
12. Wali, A. Isolation and identification of three novel antioxidant peptides from the Bactrian camel milk Hydrolysates / A. Wali [et al.] // International Journal of Peptide Research and Therapeutics. 2020. Vol. 26. R. 641–650. https://doi.org/10.1007/s10989-019-09871-x
13. Mel'nikova, E. I. Osobennosti polucheniya i primeneniya micellyarnogo kazeina v tehnologii molokoemkih belkovyh produktov / E. I. Mel'nikova [i dr.] // Tehnika i tehnologiya pischevyh proizvodstv. 2022. T. 52. № 3. S. 592–601. https://doi.org/10.21603/2074-9414-2022-3-2389;
14. Reale, E. Effects of the depletion of whey proteins from unconcentrated milk using microfiltration on the yield, functionality, and nutritional profile of Cheddar cheese / Reale, E. [et al.] // Journal of Dairy Science. 2020. Vol. 103(11). R. 9906–9922. https://doi.org/10.3168/jds.2020-18713
15. El'chaninov, V. V. Nomenklatura i svoystva belkov moloka korovy (Bos taurus) / V. V. El'chaninov. – Barnaul : Altayskiy gosudarstvennyy universitet, 2022. – 300 s.
16. Mel'nikova, E. I. Obosnovanie parametrov membrannoy fil'tracii pri proizvodstve izolyata syvorotochnyh belkov / E. I. Mel'nikova [i dr.] // Pischevye sistemy. 2024. T. 7, № 2. S. 246–252. https://doi.org/10.21323/2618-9771-2024-7-2-246-252; https://elibrary.ru/vktzxd




